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Notation 
 

An overdensity vector contains signal plus photometric zero-point noise plus shot noise.  It can be 

represented in three different bases as listed below, 

                          

 

                               

 

                      

 

I will occasionally work with the noise terms as a unit using       and      . 

 

We can rotate between cell-space and either W-space or signal-space using an eigenvector matrix   or 

  respectively, 

 

                     

                     

 

  results from the diagonalization of the following sum of inverses of the signal and noise covariance 

matrices, 

  
     

             

where 



  
          

  
  

 

I distinguish between simulated overdensity realizations using superscripts.  For example, the cell-space 

vector                     corresponds to                     in W-space components. 

Signal, zero-point noise and shot noise can be fully specified for simulated cases. 

 

Photometric zero-point noise realizations are generated in segment-space.  There are 2052 SEGMENTs in 

DR6, each one of which has a i.i.d. zero-point offset          
  .  The covariance matrix of the zero-

point offsets in segment-space     is therefore diagonal with every non-zero element equal to   
 .  

There is a mapping matrix   that rotates the overdensities due to the zero-points back into cell-space, 

       such that      
      

 

Shot noise is diagonal in cell-space where                and      is the number of galaxies expected 

in the  th
 cell.  This value is determined from the galaxy selection function. 

 

Instances of  ,  , and  are each the result of a Gaussian random process and therefore can be 

parameterized in terms of the Gaussian variates that comprise them.  I will represent this parameterized 

format as                     where the full parameterization vector          .  The 

parameters can also be grouped into subsets.  One convenient representation, as we will see, is      

          where        . 

 

However, the universe contains only one actual overdensity vector for which I reserve the symbols  ,   

and   for cell, signal and W-spaces respectively, 

 

            

            

            

 

In the real world, only the left-hand sides of the equations are known.  When we are running diagnostics, 

all terms can be specified. 

 

 

Signal Prediction Through Bayes’s Theorem 
 

The expected value of the  th
 signal coefficient can be expressed as a function of the posterior probability 

of a partial overdensity model   given the data, 

 

                         

 



If I let        represent random variates drawn from the distribution       , the estimated signal given 

the data is, through a Monte Carlo process, 

 

    
 

 
     

      

 

   

  

 

in cell-space and 

    
 

 
     

      

 

   

  

 

in W-space.  It should be the case that 

 

          
   

     

 

There is no immediately obvious way to generate variables from        directly, so I invoke Bayes’s 

theorem, 

       
          

    
  

 

where 
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Multiplying and expanding, 

 

                
 

 
        

 
  

                
 

 
       

        

                              
 

 
     

         
               

     
           

 

The term      
 

 
    

     is constant and can be disregarded in this proportion.        and   is 

orthonormal, therefore 

 

                   
            

 

 
        

     
         

                                 
               

 

 
           

     
            



                                         
 

 
                 

 

where        
   .   

 

     is an  -dimensional vector with   degrees of freedom.  We have the freedom to choose any   

parameters   that most conveniently map    .  A natural choice is       for all  . 

 

We note that number of degrees of        is        while the dimensionality of W-space is only  , 

a fact that might suggest information is being discarded.  However, both the shot noise and zero-point 

noise processes can be entirely represented within   dimensional cell-space.  Consequently, their sum can 

also be expressed in   dimensions.  Since we do not deal with the underlying degeneracies between these 

two types of noise, combining them in this fashion will not impede our estimation of the   signal 

parameters  . 

Analytic W-Space Solution 
 

Linear Estimator 
 

The expected value of the  th
 signal coefficient can be expressed as a function of the posterior probability 

of a partial overdensity model   given the data, 

 

                         

 

I invoke Bayes’s theorem, 

       
          

    
  

 

where 
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Multiplying and expanding, 

 

           
 

              
     

 

 
        

 
  

                
 

 
       

        



 

                         
 

              
     

 

 
     

         
               

     
           

 

      and   is orthonormal, therefore 

 

           
 

              
     

 

 
    

            
            

 

 
        

     
         

 

                        
     

 
     

    

              
        

               
 

 
           

     
            

 

                        
     

 
 

    
    

              
           

 

 
                 

 

where        
   . 

 

To normalize this function I note that              and therefore 

 

 
          

    
       

and 

                     

 

Given that the signal we seek to estimate is  -dimensional, we have the freedom to choose any   

parameters that most conveniently map     or    .  The form of the probability distribution 

function suggests a natural choice of       for all  .  From this perspective, it is more convenient to 

solve the problem 

                      

 

Because of the diagonality of      , the expression for            is separable in the exponent, 

 

                     

 

             
                 

                 
 

 



             

    
     

 
 

    
    

              
        

 
             

 
     

 
     

    

              
         

 
 

              

 

 

             
            

 
 

            

          
 
 

              
 

 

             
               

 
   

   
    

  
               

           
  

 
 

  
    

    
  

        
    

     
 

 

 

             
              

 
 

  
   

    
    

 
    

           
  

 
   

    
    

    
  

    
  

 

All but one of the integrals in the numerator and denominator will cancel, 

 

      

 
          

 
 

  
   

    
                  

 
 

  
   

    
               

 
 

  
   

    
    

         
  

 
   

  
  

    
    

           
  

 
   

    
    

    
           

  
 
   

  
  

    
    

 
  

 

       
             

 
   

   
    

    

         
  

 
 

  
    

    
    

 
  

 

We integrate over all possible values of    from    to  . 

 

       
             

 
   

   
    

    
 

  

         
  

 
   

    
    

    
  

  

 

 

             
  

  
    

  

 

Once all values of    are evaluated, the solution in cell-space can be found through one final rotation 

             .  It should also be clear that 

 



         
  

  
    

  

  
    

  

 

Likewise, the expected value of the signal squared can be found through integration, 

 

   
     

   
           

 
   

   
    

    
 

  

         
  

 
 

  
    

    
    

  

  

 

 

              
  

    
    

  
     

  

 

This implies that the variance of the solution in W-space is 

 

             
             

 

  
    

  

 

From my observations of the R7, R11 and R16 cases   
    

      .  It is also interesting to note that the 

variance of the solution is independent of  .  I assume that if the variance is independent of the data in 

one space, it must be in all the other spaces as well.   

  

   

  clean/shot/delta_R[ ]_[  ]_[      ]_fwriteC 

 
    

 clean/Eigen_W_[  ]_R[ ]_[    ]_[    ]_bp62_Values_fwriteR 

  clean/Eigen_W_[  ]_R[ ]_[    ]_[    ]_bp62_Vectors_fwriteC 

  
    t…/clean/Sigma_nu_inv_W_[  ]_R[ ]_[    ]_[    ]_bp62_fwriteC 

clean/MHK.m ~ 15 sec for 200 vectors, R8 

      clean/shot/kgd_R[ ]_sp[02]_[      ]_fwriteC 

 

This solution is general to any Gaussian signal and noise and is applicable for any systematic pattern on 

the sky. 

 

As a sanity check, we examined the covariances between     .  We expect that the    for cells 

intersecting the same SEGMENT should be more positively correlated with each other than with the    

values corresponding to cells that do not.  We selected the longest SEGMENT in our simulation (the one 

corresponding to  ’s     th column) and found that it intersects 2019 cells.  One of those cells (the one 

corresponding to  ’s    th row) was selected at random. 

 

Using 10,000   realizations, we calculated                for each of the 2019 cells that share a 

SEGMENT with #534.  We found that the average covariance was        with a standard deviation of 



     .  The average covariance between cell #534 with the cells that don’t share the same SEGMENT 

was        with a standard deviation of      .  I repeated calculation for cell #881 and found a 

covariance of             for cells intersecting the same SEGMENT and              for cells 

that do not. 

 

While this is admittedly a small measurement sample, it provides evidence that the estimated signal in 

cell-space has a covariance structure linked to the cell/SEGMENT intersections.  (I could have extended 

this, but it would have been time consuming and I don’t know whether it’s worthy of publication in any 

event.) 

  



Quadratic Estimator 
 

We can also solve for the expected signal squared in W-space and in signal-space.  If we define 

     , then     .  For a particular element 

 

                                      

 

  clean/Eigen_W_[  ]_R[ ]_[    ]_[    ]_bp62_Vectors_fwriteC 

  signal/Eigen_kappa_R[ ]_[    ]_[    ]_beta_0p62_Vectors_fwriteC 

SmallCode.m (J) ~ (284/56/18/1) minutes for R6/R7/R8/R16 

  g…/clean/M[ ]_[sp02]_[    ]_[    ]_[bp62]_fwriteC 

 

 

The signal coefficient squared in signal-space is found through a double sum over the signal coefficients 

in W-space, 

 

  
            

 

    

 

 

 

               

   
   

          
 

 

  
   

 

I’m not 100% confident that this next step is true, but let’s argue that 

 

   
              

   
   

              
 

 

   
      

 

I’ll try to rearrange to make the computation more efficient, 

 

   
                           

   
   

      
 

 

   
     

 

                                    

   

      
             

 

      
 

 

   
     

 

                                    

   

      
 

 

    
                   

 



                                    

   

      
  

  
    

    

  
     

 
  

  
    

  

  
    

 

 

 

 

                                   

   

  
    

 

  
    

 

  

 

I can define a quantity                 or         .  Then, 

 

   
       

   
    

 

  
    

 

  

 

 

  clean/shot/delta_R[ ]_[  ]_[      ]_fwriteC 

     
 clean/Eigen_W_[  ]_R[ ]_[    ]_[    ]_bp62_Values_fwriteR 

  clean/Eigen_W_[  ]_R[ ]_[    ]_[    ]_bp62_Vectors_fwriteC 

  
    t…/clean/Sigma_nu_inv_W_[  ]_R[ ]_[    ]_[    ]_bp62_fwriteC 

  g…/clean/M[ ]_[sp02]_[    ]_[    ]_[bp62]_fwriteC 

clean/MHKs2.m ~ 10,000 vectors in (17/8/1) minutes for R7/R8/R16  

       clean/shot/s2gd_R[ ]_sp[02]_[      ]_fwriteC 

 

 

 

  



Sampling        with Metropolis-Hastings 
 

The Metropolis-Hastings algorithm is a Markov chain Monte Carlo method for generating realizations 

from a distribution that is difficult to sample directly.  To use Metropolis-Hastings it is sufficient to have 

a function that is proportional to that distribution.  This is certainly the case with this problem.  I wish to 

sample        and possess an analytic form for                  . 

 

 

The Metropolis-Hastings Method 
 

To simplify notation, let the unscaled posterior density be denoted 

 

                       
 

 
                 

 

Let us also introduce an independent candidate density      that will ideally match the correlation 

structure of        but with a broader tail so that the former “blankets” the latter.  I will derive the exact 

form of this distribution in the next section. 

 

The steps for the Metropolis-Hastings method are as follows: 

 

1. Choose an initial set of signal parameters      that preferably lies near the peak of       . 

 

2. Repeat the following steps   times for        : 

a) Draw a new random vector    from     . 

b) Calculate the acceptance probability              where 

 

              
           

           
   

 

c) Draw a random variate   from the uniform distribution       . 

d) If               , then set         and accept    as one of the random variates of 

      .  Otherwise, set            . 

 

 

Independent Candidate Density 
 

We select an independent candidate density      that has approximately the same shape as the target 

distribution       .  A reasonable first guess is a multivariate Gaussian distribution that peaks in the 

same place as        - let’s call it    - and has the same curvature as        at     .  However, in 

practice the Gaussian is usually not broad enough to provide adequate coverage at the tails of       . 



 

A better candidate density is the multivariate  -distribution         .  This density function should have 

the same peak and curvature at the peak as the Gaussian, but at low degrees of freedom   it is more 

adequate for representative sampling.  (As   increases,    thins and asymptotically approaches the 

multivariate Gaussian distribution – we do not want to go too far in this direction.) 

 

To find the peak and curvature we begin with the logarithm of the target density, 

 

                         
 

 
                

 

I note that a function and its logarithm have maxima located at the same position.  The first derivative of 

       where       is 

 

 

 
 

       

   

 
       

    

 
 

  
     

    
  

 

     
    

  

   

 

Setting this equal to zero reveals the location of the target density’s maximum, 

 

    
     

    

 

     
    

   

 

In practice,       ,          and           . 

 

The inverse of the target density’s second derivative at      yields the curvature of a multivariate 

normal that peaks at the same location 

 

   

 
 
 
 
 
 
        

   
  

        

      

   
        

      
 

        

   
  

 
 
 
 
 

    

  

   
   

    
  

   

     
    

 

  

  

 

This simplifies to          
. 

 

Dropping the constant terms (since they cancel anyway), my independent candidate distribution adopts 

the form of         , 

 



        
 

 
      

 
            

        

  

 

To sample    from this distribution, I begin by solving for the lower triangular matrix   that satisfies the 

Cholesky decomposition      .  The diagonality of   yields a simple solution, 

 

  

 
 
 
 
     

    
   

   

      
    

  
 
 
 
 

  

 

When a set of random variables is drawn from the  -distribution with    , 

 

   

  
 

  

   

 

the vector 

        

 

will constitute a random draw from     . 

 

 

  



W-Space 
 

It’s predictably time-consuming to generate two inverses and the diagonalization of their sum.  Be sure to 

forcibly symmetrize the matrices before inversion or diagonalization.  Otherwise small numerical 

discrepancies will cause the processes to take forever. 

 

                          

                     

 
    

         

base/Overdensities_DR6_R[ ]_[    ]_[    ]_bp62_fwriteR 

   signal/Sigma_kappa_R[ ]_[    ]_[    ]_bp62_fwriteC 

  cells_grids/A_DR6_R[ ]_[     ]_[    ]_bp62_fwriteR 

clean/Wspace.m ~ 5.3hr for   
  
, 19hr for   

  
, 11hr (29.5hr – R7) for 

diagonalization, 15min for   
     (R8) 

  
   t…/noiseMat_Vec/Sigma_nu_inv_[  ]_R[ ]_[    ]_[    ]_bp62_fwriteC 

  
   signal/Sigma_kappa_inv_R[ ]_[    ]_[    ]_bp62_fwriteC 

  clean/Eigen_W_[  ]_R[ ]_[    ]_[    ]_bp62_Vectors_fwriteC 

 
    

 clean/Eigen_W_[  ]_R[ ]_[    ]_[    ]_bp62_Values_fwriteR 

  
    t…/clean/Sigma_nu_inv_W_[  ]_R[ ]_[    ]_[    ]_bp62_fwriteC 

 

R6 

 

   g…/signal/Sigma_kappa_R6_0p02_0p22_bp62_fwriteC 

clean/Wspace.m ~ 2.25 days for   
  
, 9.8 days for   

  , 6.7 days for 

diagonalization, 3.4 hours for   
    

  
   t…/noiseMat_Vec/Sigma_nu_inv_[  ]_R6_0p02_0p22_bp62_fwriteC 

  
   signal/Sigma_kappa_inv_R6_0p02_0p22_bp62_fwriteC 

  clean/Eigen_W_[  ]_R6_0p02_0p22_bp62_Vectors_fwriteC 

     
 clean/Eigen_W_[  ]_R6_0p02_0p22_bp62_Values_fwriteR 

  
    t…/clean/Sigma_nu_inv_W_[  ]_R6_0p02_0p22_bp62_fwriteC 

 

 

 

 



 
 

 

 

 

Because W-space is dominated by shot noise, we expect eigenvectors to be highly localized in cells.  The 

zero-point noise, which is of a lower magnitude, should introduce some leakage of those modes into 

cells that lie within the same SEGMENT. 

 

Upon inspection, we discovered that for most of the lower order (       ) modes the eigenvector 

elements were effectively zero everywhere except in about 1 to 4 adjacent cells, matching our 

expectations.  (The pixels are too small and dim to be visible in this document, so refer to the saved 

images in the notes folder if you want to examine them.)  The eigenvectors become much more diffuse 

at higher orders. 

 

The test vectors can be rotated into W-space. 

 

  clean/shot/delta_R[ ]_[  ]_[      ]_fwriteC 

   clean/shot/delta_kappa_R[ ]_[  ]_[      ]_fwriteC 

   clean/shot/delta_eta_R[ ]_[  ]_[      ]_fwriteC 

  clean/Eigen_W_[  ]_R[ ]_[    ]_[    ]_bp62_Vectors_fwriteC 

clean/ScriptdRealz.m (E) ~ < 1-6 min for 200 realizations 



  clean/shot/W_d_R[ ]_[  ]_[      ]_fwriteC 

   clean/shot/W_ds_R[ ]_[  ]_[      ]_fwriteC 

   clean/shot/W_dn_R[ ]_[  ]_[      ]_fwriteC 

 

Our cleansing algorithm is underestimating the true signal and overestimating the true noise.  This 

suggests there’s some sort of overweighting of the noise in W-space.  To quantify this, I modify 

  
      

            by introducing a scalar factor   where    
 

 
   .  In the interest of time, I 

only test for R16.  This code runs the same as before, but just run the lines with the comment “only use 

with alpha scaling” instead. 

 

clean/Wspace.m ~ 11hr for diagonalization, 15min for   
     (R16) 

  clean/Eigen_W_[  ]_R[ ]_[    ]_[    ]_bp62_alpha[ ]_Vectors_fwriteC 

 
    

 clean/Eigen_W_[  ]_R[ ]_[    ]_[    ]_bp62_alpha[ ]_Values_fwriteR 

  
    t…/clean/Sigma_nu_inv_W_[  ]_R[ ]_[    ]_[    ]_bp62_alpha[ ]_fwriteC 

 

  



Sampling Algorithm 
 

The trickiest part of running the sampler is calculating  .  The independent candidate density      

    if one ignores the exponent.  When taken to the power         , the value reduces to 0.  As a 

result, we need to be clever during the calculation to avoid numerical overruns. 

 

           

           
 

                

               

             

              
 

 

                                                                                 

 

                                              
   

 
                        

 

where 

             
 
             

 

Next, the independent candidate density’s degrees of freedom parameter   must be adjusted to admit 

the optimal number of variates.  As   increases,      approaches a multivariate Gaussian.  The ideal 

acceptance rate for an  -dimensional Gaussian is about 23% when   samples are drawn.  For R8, I ran a 

test where the number of samples drawn from      is         .  I adjusted   each time and 

observed the following acceptance rate, 

 

  clean/shot/delta_R[ ]_[  ]_[      ]_fwriteC 

 
    

 clean/Eigen_W_[  ]_R[ ]_[    ]_[    ]_bp62_Values_fwriteR 

  
    t…/clean/Sigma_nu_inv_W_[  ]_R[ ]_[    ]_[    ]_bp62_fwriteC 

clean/tDist_fSolver.m ~ 22 min per   (R7) 

 

 

Plots.m (P) 

 

http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aoap/1034625254
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aoap/1034625254


 
 

An acceptance rate of 23% is reached at       for R8, at       for R7 and at      for R16.  

Because   only shifts the mean of the distribution, the above chart should be independent of the data 

vector you wish to cleanse. 

 

  clean/shot/delta_R[ ]_[  ]_[      ]_fwriteC 

 
    

 clean/Eigen_W_[  ]_R[ ]_[    ]_[    ]_bp62_Values_fwriteR 

  
    t…/clean/Sigma_nu_inv_W_[  ]_R[ ]_[    ]_[    ]_bp62_fwriteC 

clean/MetropolisHastings.m ~ 84 min (2hr 53min) to generate     candidates, 

34 min (1hr 11min) to rotate them for R8 (R7) 

       t…/clean/shot/Realz_theta_given_delta[ ]_R[ ]_[  ]_[      ]_[  ]_fwriteC 

       t…/clean/shot/Realz_kappa_given_delta[ ]_R[ ]_[  ]_[      ]_[  ]_fwriteC 

 

Note that in this algorithm the   realizations are actually realizations of signal in W-space, i.e. 

                 .  It takes roughly half a day to generate a million RVs from       .  Getting the 

coefficients in cell-space is accomplished through the rotation                    . 

 

 

 

  



Trace Plots 
 

The usual tool for assessing the progress of a Metropolis-Hastings algorithm is known as a “trace plot”.  

Each time a new        is drawn, a point is laid down indicating the value of the  th parameter during 

realization  .  For clarity, only one dimension’s element is visualized at a time. 

 

If the initial vector      is selected far from the peak of the distribution       , one must continue 

drawing random vectors    until the region containing the higher probabilities is reached.  This is known 

as the “burn-in” period.  The number of vectors needed, and ultimately discarded, during the burn-in 

period varies with distribution and initial position.  On a stable trace plot, i.e. one from which we can 

accept random variates, the vector elements drawn should vary around some fixed horizontal trend line.  

A burn-in period typically manifests itself on a trace plot as a trend approaching that baseline. 

 

With this problem I know precisely where        peaks, so no burn-in period should be necessary.  I 

verify this assumption by examining the trace plots of four elements.  These elements were selected to 

lie at well-separated redshifts.  As one can see in the figures below, the trace plots start out stable 

meaning we can start accepting        right away. 

 

  clean/shot/delta_R[ ]_[  ]_[      ]_fwriteC 

   clean/shot/delta_kappa_R[ ]_[  ]_[      ]_fwriteC 

  
    t…/clean/Sigma_nu_inv_W_[  ]_R[ ]_[    ]_[    ]_bp62_fwriteC 

 
    

 clean/Eigen_W_[  ]_R[ ]_[    ]_[    ]_bp62_Values_fwriteR 

  clean/Eigen_W_[  ]_R[ ]_[    ]_[    ]_bp62_Vectors_fwriteC 

       t…/clean/shot/Realz_kappa_given_delta[ ]_R[ ]_[  ]_[      ]_[  ]_fwriteC 

clean/TracePlots.m ~ 2 min 

 

The above routine creates trace plots in cell-space.  If you wish to avoid plotting anything related to   , 

ignore input of files 3, 4 and 5 in the above list.  Another routine, TracePlots2.m, does the same thing 

in W-space. 

 



 
 

The black line in these figures represents the value of the data element    while the blue line represents 

the value of the clustering signal component     .  Note that the variates        tend to cluster more 

around the signal than the data even though those variates were generated through   without explicit 

knowledge of   .  This is exactly the effect we were searching for. 

 

Of course, not every cell has Metropolis-Hastings variates that are right on target with the signal.  This 

probably occurs because those cells are more highly contaminated than others.  Can we show this? 

 

 

  



Expected Signal and Variance 
 

We solve for the expected signal in each dimension by averaging over all realizations, 

 

    
 

 
    

   
   

 

   

  

 

The variance of the mean for uncorrelated random variables is 

 

         
   

 

 
  

 

where            
 .  This is merely an approximation in this case since random variates drawn through 

Metropolis-Hastings are technically not independent of one another.  However, these variates are drawn 

from an independent candidate density that blankets the entire distribution       .  This means that 

essentially all of the parameter space is accessible on each draw and the correlations aren’t as strong as 

they might be otherwise.  I might try providing an exact answer, but finding       
   

   
   

  is a more 

difficult problem than I am willing to undertake at the moment. 

 

 

Results – R8 
 

        

 

To find the mean and variance of the estimated signal, I must consider all        files.  There isn’t 

enough room in memory to read them all in simultaneously, so I have to do it piecewise. 

 

  clean/shot/delta_R[ ]_[  ]_[      ]_fwriteC 

   clean/shot/delta_kappa_R[ ]_[  ]_[      ]_fwriteC 

       t…/clean/shot/Realz_kappa_given_delta[ ]_R[ ]_[  ]_[      ]_[  ]_fwriteC 

clean/kappahatAnalysis.m ~ for each     realizations, 6.7min (10.7min) for 

the sum, 7min (10.8min) for the variance, R8 (R7) 

       
 clean/shot/kappahat_given_delta[ ]_R[ ]_[  ]_[      ]_fwriteC 

      clean/shot/kappahat_given_delta[ ]_R[ ]_[  ]_logspace_[ ]_[ ]_[  ]_fwriteC 

 

The figure below attempts to visualize the distance between the true signal    and the raw data and 

estimated signal   and    , respectively.  For about 58.3% of cells, the true signal      lies closer to the 

estimate     than to the raw data   .  In other words, if given the choice to measure the true clustering 

signal with    or  , the estimated signal will yield superior performance. 



 

 
 

I can also measure the difference in aggregate using the vector 2-norm.  Here are the results for 

simulated data vector 2, 

 

                  

                   

     
                    

 

Notice that the estimated signal lies closer to the truth than does the raw data. 

 

The deviation has decreased by a factor of         which means the variance with the correction is 

     times, or 38%, lower than the variance without it. 

 

I can also report how the estimated signal converges over time.  We can use this to help determine the 

number of realizations needed to achieve an accuracy of acceptable accuracy and precision.  



Recalculating    
  for each   is computationally expensive and it doesn’t change much as a function of 

the number of samples anyway.  Therefore, I only use    
   calculated from the totality of the samples 

when plotting the error bars below. 

 

 
The horizontal axis conveys the number of realizations   that went into the signal estimate.  The error 

bars are the 1   uncertainty in the mean    .  This plot was created for test data vector 1, R8 with 

       . 

 

  



There is a clear redshift dependence in the cleansing.  The distance between the raw data and true 

underlying signal divergences as more high-redshift cells are included.  When the raw data is replaced 

with the signal estimate   , the distance still increases but more slowly than the alternative. 

 

  clean/shot/delta_R[ ]_[  ]_[      ]_fwriteC 

   clean/shot/delta_kappa_R[ ]_[  ]_[      ]_fwriteC 

    clean/shot/kappahat_given_delta[ ]_R[ ]_[  ]_[      ]_fwriteC 

clean/kappahatz.m 

 

 

 
 

 

  



For comparison, here’s the same plot but for the cumulative variance of the clustering signal with and 

without shot noise.  The variances are gathered from the diagonal elements of   . 

                          

                     

 
    

         

base/Overdensities_DR6_R[ ]_[    ]_[    ]_bp62_fwriteR 

   signal/Sigma_kappa_R[ ]_[    ]_[    ]_bp62_fwriteC 

SmallCode.m (I) ~ fast 

 

 

 

Can we use a plot like this to know where to cut our cells off – a point where cutting would give us a 

better signal-to-noise?  Are the most distant cells contributing much to the cumulative signal?  Do they 

contain a lot of real information?  If the shot noise increases faster than the cosmological signal but 

slower than the number of cells, then we might still be ahead. 



 

 

        

 

 
 

I can also measure the difference in aggregate using the vector 2-norm.  Here are the results for first 50 

  ’s. 

 

                  

                   

 



Notice that the estimated signal lies closer to the truth than does the raw data.  The variance with the 

correction is      times, or 41%, lower than the variance without it. 

  



Results – R7 
 

The percentage of cells that saw improvement increased to 59.7% for R7 from 58.3% for R8. 

 

 
  



                  

                   

     
                    

 

Notice that the estimated signal lies closer to the truth than does the raw data.  The deviation has 

decreased by a factor of         which means the variance with the correction is      times, or 44%, 

lower than the variance without it. 

 

 
 

 

  



Here are some trace plots. 

 
 

  



The convergence properties for R7 are similar to those for R8. 

 

 

 

  



Residual Noise 
 

Under ideal circumstances the power of the deprojected noise,        , would exactly equal the sum 

of the power of the zero-point and shot noise terms.  As shown above, our method removes a bit more 

noise than is actually present.  This leads to       somewhat underestimating   and the residual 

        somewhat overestimating the actual amount of noise present      . 

 

 
 

 
 

[figure: power spectrum of residual noise between the raw data and estimated signal is shown relative 

to true noise (i.e. shot noise plus zero-point noise).         .] 

 



 
 

 

 

Faster Signal Estimates 
 

While placing error bars on    requires knowing the full set of      realizations, finding the value of    

itself does not.  If speed is a concern, one can avoid the rotations                     performed 

for each batch of realizations in W-space and instead do one rotation of the averaged          at the 

very end. 

 

In other words, here’s how the signal estimated is calculated if the random variates have already been 

rotated back into cell-space, 

 

    
 

 
    

   
   

 

   

  

 

If the variables are still in W-space, 

 

    
 

 
           

 

   

 

 

         
 

 
         

 

   

   

 

I constructed a single efficient routine that both generates the Metropolis-Hastings RVs and aggregates 

them to solve for    without saving any realizations to disk.  After the initialization portion of the code, 



the user can specify the data vectors for which he wishes to estimate the signal at the line dd=40:43.  

In this case the code would solve for    for   vectors 40, 41, 42 and 43.  Just be sure that there is a file 

name provided in the initialization for every    solution you want to write to disk.  If the user runs this on 

10 MATLAB windows simultaneously, he can easily generate at least 40    solutions overnight. 

 

  clean/shot/delta_R[ ]_[  ]_[      ]_fwriteC 

     
 clean/Eigen_W_[  ]_R[ ]_[    ]_[    ]_bp62_Values_fwriteR 

  clean/Eigen_W_[  ]_R[ ]_[    ]_[    ]_bp62_Vectors_fwriteC 

  
    t…/clean/Sigma_nu_inv_W_[  ]_R[ ]_[    ]_[    ]_bp62_fwriteC 

clean/MHkappahat.m ~ 1.8hrs per run at     realizations, R8 

                     3.2hrs per run at     realizations, R7 

   clean/shot/kappahat_given_delta[ ]_R[ ]_[  ]_1e5_fwriteC 

 

At the end of this code I have included some scripts to perform analysis and create plots like the ones 

presented above. 

 

Before I created the efficient routine, I tested my method by creating two separate pieces of code that 

handled the Metropolis-Hastings generation and    solver in separate steps.  It did this by writing giant  

       files to disk in the first step and opening/processing them in the second.  This method allows you 

to measure the convergence of the estimator, but once that’s been figured out once, there’s really no 

need to do it again.  For completeness, here are those two routines. 

 

  clean/shot/delta_R[ ]_[  ]_[      ]_fwriteC 

     
 clean/Eigen_W_[  ]_R[ ]_[    ]_[    ]_bp62_Values_fwriteR 

  
    t…/clean/Sigma_nu_inv_W_[  ]_R[ ]_[    ]_[    ]_bp62_fwriteC 

clean/MetropolisHastingsFast.m ~ 84min (2hr 43min) to generate     

candidates, R8 (R7) 

       t…/clean/shot/Realz_theta_given_delta[ ]_R[ ]_[  ]_[      ]_[  ]_fwriteC 

 

Likewise, the    solver is modified only slightly by changing the input realization files and introducing the 

rotation through  . 

 

  clean/shot/delta_R[ ]_[  ]_[      ]_fwriteC 

   clean/shot/delta_kappa_R[ ]_[  ]_[      ]_fwriteC 

  clean/Eigen_W_[  ]_R[ ]_[    ]_[    ]_bp62_Vectors_fwriteC 

       t…/clean/shot/Realz_theta_given_delta[ ]_R[ ]_[  ]_[      ]_[  ]_fwriteC 

clean/kappahatAnalysisFast.m ~ 10.2 min/1e5 realz R7 

    clean/shot/kappahat_given_delta[ ]_R[ ]_[  ]_[      ]_fwriteC 

      clean/shot/kappahatK_given_delta[ ]_R[ ]_[  ]_logspace_[ ]_[ ]_[  ]_fwriteC 

 



Expected Shot Noise and Zero-Point Noise 
 

We assume the shot noise      is mean-zero and Gaussian with the distribution function,  

 

          
 

 
       

         

 

The signal plus systematic noise is also Gaussian, therefore   is symmetric around   such that the 

probability of obtaining a particular data vector given a set of shot noise parameters   is 

 

            
 

 
        

 
   

             

 

where    
          

  
.  Let us further introduce the eigenbasis   which results from the following 

diagonalization, 

  
      

            

 

A data vector represented in  -space is denoted 

 

                      

 

where 

                     

 

Taking the product of the probabilities, 

 

                    
            

 

 
        

      
         

 

                                   
              

 

 
               

 

                                     
 

 
                

 

where         
   .   

 

The expected value of the  th shot noise coefficient in  -space is calculated through the equation below.  

We have chosen     as the shot noise parameters.  The second equality comes from Bayes’s 

theorem. 

 

                                        



 

Following a similar argument to that employed for  -space, we find 

 

       
  

  
   

  

 

Finally, rotate the result back into cell-space with             . 

 

 

Efficiently Solving for    
   

 

One can evaluate    
          

  
 relatively quickly if   

   and the diagonalization            

are already known. 

 

   
          

  
 

                              
  

 

                       
  

    

 

By the Sherman-Morrison-Woodbury formula, 

 

                               

 

Let         and           
   . 

 

   
      

      
            

   

   
                     

and 

   
  
  

   

 

where           ,             , and                 .  Then, 

 

                      

                                       

                                   

 

Simplify the matrix inverse by partitioning it, then use the formula for the inverse of a partitioned matrix, 

 

          
          

  
 
  

  
        

                 

  
   



 

Completing the multiplication,                             Typically the eigenvalues stored 

in      are calculated for     .  To adjust for an arbitrary scaling of the photometric zero-points, 

 

            
  

     
        

             

 

I tested this algorithm explicitly for R8 by multiplying    
   from the above equation with       and 

verifying that the result was the identity matrix. 

 

                          

                     

 
    

         

base/Overdensities_DR6_R[ ]_[    ]_[    ]_bp62_fwriteR 

  
   signal/Sigma_kappa_inv_R[ ]_[    ]_[    ]_bp62_fwriteC 

  noiseMat_Vec/Eigen_DR6_R[ ]_[    ]_[    ]_beta_0p62_Vectors_fwriteC 

    
 noiseMat_Vec/Eigen_DR6_R[ ]_[    ]_[    ]_beta_0p62_Values.txt 

clean/Bspace.m ~ (1hr) for    
   (R8), 

(3.6 days) for   (R8), (15min) for    
    (R8) 

   
   g…/clean/Sigma_KappaEta_inv_[sp02]_R[ ]_[    ]_[    ]_bp62_fwriteC 

   
    g…/clean/Sigma_KappaEta_inv_B_[sp02]_R[ ]_[    ]_[    ]_bp62_fwriteC 

  clean/Eigen_B_[sp02]_R[ ]_[    ]_[    ]_bp62_Vectors_fwriteC 

    
 clean/Eigen_B_[sp02]_R[ ]_[    ]_[    ]_bp62_Values_fwriteR 

 

 

 

Testing the Shot Noise Estimator 
 

I assess the quality of the shot noise estimator in two ways.  First, I use one fixed shot noise overdensity 

vector       with   signal and zero-point realizations such that                    .  I estimate the 

shot noise          for each and average the estimates for each cell, 

3 

   
   

 
    

   
    

   

 
  

 

Second, I use multiple realizations of      and predict          for each                    .  I 

assume a default guess for the shot noise in each cell is 0 and define the default error as    
   

 .  I 

compare this against the estimate error    
   

    
   

    .  For each cell, I average each set of errors and 

see whether the estimate is closer to the true shot noise than zero. 

 



                          

                     

 
    

         

base/Overdensities_DR6_R[ ]_[    ]_[    ]_bp62_fwriteR 

  signal/Eigen_kappa_R[ ]_[    ]_[    ]_beta_0p62_Vectors_fwriteC 

 
   

 signal/Eigen_kappa_R[ ]_[    ]_[    ]_bp62_Values_fwriteR 

  cells_grids/A_DR6_R[ ]_[     ]_[    ]_bp62_fwriteR 

   
    g…/clean/Sigma_KappaEta_inv_B_[sp02]_R[ ]_[    ]_[    ]_bp62_fwriteC 

  clean/Eigen_B_[sp02]_R[ ]_[    ]_[    ]_bp62_Vectors_fwriteC 

    
 clean/Eigen_B_[sp02]_R[ ]_[    ]_[    ]_bp62_Values_fwriteR 

clean/zgd.m ~ 4 to 15 min per section  

  
   

    
   

   clean/ZetaTestSingle_[sp02]_R[ ]_[    ]_[    ]_bp62_[  ].txt 

    
   

       
   

    
   

        
clean/ZetaTestMultiple_[sp02]_R[ ]_[    ]_[    ]_bp62_[  ].txt 

 

Plots are created in paper1.m.  This first plot shows the values in each cell of the simulated shot noise 

     and the average of the predicted shot noise       using multiple signal and systematic noise 

realizations. 

 

 
 

My algorithm does a significantly better job of estimating the shot noise than a random guess would.  It 

is mostly able to pick out the sign of the overdensity and there is a positive correlation between the 

magnitude of   
   

 and    
   

.  As expected, the shot noise of low redshift objects is less than that of high 

redshift objects.  The values along the  -axis are the result of averaging over 10,000 realizations. 

 



The next plot shows the expected default error and smart error using 10,000 unique realizations of 

signal, shot noise and systematic noise.  This figure shows that at low redshifts there is very little 

difference between assuming a default shot noise of 0 and using my estimate.  For higher redshift cells 

where the shot noise is larger, using my estimate is preferable to assuming the shot noise is zero. 

 

 
 

 

 

Testing the Zero-Point Noise Estimator 
 

Because            has a rank    ,     diagonal elements of      equal zero.  This makes it 

impossible to directly evaluate   
              since     of the diagonal elements of         

equal  infinity.  Therefore when solving for       we must employ an approach that sidesteps the need 

for   
  . 

 

I suggest the following.  Because        , 

 

                         

and thus, 

                     

 



I assess the quality of this estimator in several ways.  First, I generate a single zero-point realization 

      and an associated             .  I combine this into   data realizations with randomized 

signal and shot noise vectors                    .  Each realization will admit a solution for the 

expected signal and shot noise, and consequently for the zero-point noise as well, 

 

                              

 

The zero-point solutions can be averaged over to provide a best estimate in each cell, 

 

   
   

 
    

   
    

   

 
  

 

Second, we use       to compute a best-fit set of photometric coefficients        by solving         

      .  These can be compared against       and associated with the SEGMENT lengths to see 

whether longer SEGMENTs are better constrained. 

 

We can also solve for          , the photometric zero-points per realization via            

         .  The average of these individual solutions can be reported, 

 

    
   

 
     

   
    

   

 
  

 

Third, I use multiple realizations of       and              to calculate          and           for 

each                    .  I assume a default guess of 0 for the systematic error in each cell and 

define the default error as    
   

 .  I compare this against the estimate error    
   

    
   

    .  For each 

cell, I average each set of errors and see whether the estimate is closer to the true shot noise than zero. 

 

Finally, I do the same thing for the photometric zero-points in each SEGMENT.  I assume a default guess 

of 0 for the zero-point in each SEGMENT and define the default error as     
   

 .  I compare this against 

the estimate error     
   

     
   

    .  For each SEGMENT, I average each set of errors and see 

whether the estimate is closer to the true zero-point than zero. 

 

                          

                     

 
    

         

base/Overdensities_DR6_R[ ]_[    ]_[    ]_bp62_fwriteR 

              base/PrimarySegmentLengths_R[ ].txt 

  signal/Eigen_kappa_R[ ]_[    ]_[    ]_beta_0p62_Vectors_fwriteC 

    
 signal/Eigen_kappa_R[ ]_[    ]_[    ]_bp62_Values_fwriteR 

  cells_grids/A_DR6_R[ ]_[     ]_[    ]_bp62_fwriteR 



   
    g…/clean/Sigma_KappaEta_inv_B_[sp02]_R[ ]_[    ]_[    ]_bp62_fwriteC 

  clean/Eigen_B_[sp02]_R[ ]_[    ]_[    ]_bp62_Vectors_fwriteC 

    
 clean/Eigen_B_[sp02]_R[ ]_[    ]_[    ]_bp62_Values_fwriteR 

clean/egd.m ~  

  
   

    
   

   clean/EtaTestSingle_[sp02]_R[ ]_[    ]_[    ]_bp62_[  ].txt 

              

            
clean/DmTestSingle_[sp02]_R[ ]_[    ]_[    ]_bp62_[  ].txt 

    
   

       
   

    
   

        
clean/EtaTestMultiple_[sp02]_R[ ]_[    ]_[    ]_bp62_[  ].txt 

     
   

        
   

     
   

           
clean/DmTestMultiple_[sp02]_R[ ]_[    ]_[    ]_bp62_[  ].txt 

 

The general outcome of this investigation is that this algorithm can pick out the effects of the systematic 

noise, but at the magnitude of        , the results are weak.  Consider these results for the R8 cells.  

The blue line indicates the linear trend, but the correlation between the truth and the estimate is only 

weakly positive. 

 

 
 

However, you still get the sense here that this is doing a better job than nothing at all.  The predicted 

systematic error overdensities are still trending the right way and there are isolated “strings” of cells 

that appear to be more positively sloped than others.  I conducted a visual investigation of these cells 



along the most prominent string in the upper right-hand corner of the figure.  I find that they are aligned 

along the longest SEGMENT in the survey.  (This was a quick and dirty cut so the other blue dots off of 

the main SEGMENT are almost certainly not related.) 

 

 
 

This indicates that prediction of the systematic error is possible, but difficult especially in the presence 

of other higher magnitude sources of signal and noise.  However, the predictive capacity of the 

estimator is better for groups of cells that are subjected to the same systematic offset.   

 

When we allow the systematic overdensities to vary we find that our estimator on average does offer a 

better prediction than would a default guess of     .  As with the shot noise case, the estimate is 

more powerful for high redshift cells.  One also notices a separated string below the main line of points.  

Again, this refers to cells in the longest SEGMENT of the footprint. 

 

 



 

In looking at the solution for         I find that as with       the predictive power of the zero-points is 

weak, but present.  The colorbar is the length of the associated PRIMARY SEGEMNT in degrees.  Most 

SEGMENTs are too small, and therefore contain too little information, for our algorithm to say anything 

useful about their zero-points.  This is shown through the nearly horizontal line of blue dots for which 

    
   

  .  As the SEGMENTs get longer (visually this is the light blue into red) then start to gradually 

approach the linear trend that represents a perfect prediction.  Only SEGMENTs with non-zero lengths 

are plotted here. 

 

 
 

I get the same answer from both        and       .  That’s encouraging and lowers the amount of work 

I’d have to do in figuring out which is preferable. 

 

 
 



When the signal, shot noise and zero-point noise realizations are permitted to vary, the predicted zero-

points have the behavior as visualized in the figure below. 

 

 
 

We again see that on average my estimator performs better than the default position of simply taking all 

of the zero-points to be equal to zero.  As before, the better performance is experienced by the longer 

SEGMENTs. 

 

 

 

  



Analysis of Power Spectrum 
 

We want to examine the effect cleansing has on the galaxy clustering power spectrum.  We will do this 

in two ways – by 1) plotting an actual power spectrum by averaging power over discretized   bins and 2) 

integrating over all length scales to determine the total variance. 

 

 

Power in Bins 
 

Let’s start by figuring out the power spectrum in discretized bins.  There are a couple different ways to 

do this, but I will employ a non-parametric estimator that utilizes the signal eigenmodes.  I established 

earlier that the power spectrum of the clustering signal can be represented as a variance weighted sum 

over all   Fourier-transformed signal eigenvectors   , 

 

                    
            

 

   

  

 

Because the eigenvectors    are discretized, the best we can do in finding each        is a fast Fourier 

transform.  This means we will have to split  -space into a discrete number of (about 480 or so) bins.  

Let the boundaries of the  th bin be    and     .  The power in this bin is the average of the Fourier 

amplitudes between those two band powers, 

 

        
               

 

   

  

 

where 

              
                          

                                  
   

 

Using the eigenvalues   
   

 will recover the fiducial power spectrum used in our model.  But to assess the 

quality of the signal reconstruction, we should replace this with the variance of the mean-zero 

estimated signal coefficients in signal-space such that 

 

         
    

 

   

  

 

where                  and        .  Note that once the signal modes and Fourier grid spacings are 

set, the   coefficients need only be solved for once.  New estimated signal coefficients can be plugged in 

thereafter to yield their unique power spectrum. 



 

To find the variance of the power in each bin I begin with the knowledge that each of the     terms are 

independent of one another.  This holds since the eigenmodes from which they derive are linearly 

independent.  Therefore, 

                  
    

 

   

  

 

                            
     

 

   

 

 

                        
         

 

   

  

 

    is an average, so the variance on the average will be the variance of all the terms that determine 

the coefficient (this is what is given in 

d…/power_spectra/coef/Bmn[ ]_R[ ]_kappa_VarlB_fwriteR).  I should take the values in that 

table and divide each by     where    is the number of Fourier modes that contributed to the average.  

This value is reported in the final column of the table.  

 

At times it is more convenient to represent the power in terms of the W-space eigenmodes. 

 

                     
           

 

   

  

 

The best estimate of the power in the  th bin is 

 

         
        

 

   

  

 

when                 . 

 

 

 

Integrated Power 
 

We can measure the total signal variance    by integrating over the entire power spectrum, 

 



   
 

     
           

 

 

  

 

Within a finite Fourier box, the best we can do is a sum over the available  -vectors, 

 

   
 

     
            

 

  

 

where    is the resolution of the grid boxes in Fourier space.  This is equivalent to the following when   

is the volume of the full Fourier grid in cell-space, 

 

   
 

 
      

 

  

 

For my problem, this is almost always set to                 .  Note that this is a finite sum over all 

      -vectors.  It follows that 

 

   
 

 
    

            
 

    

 

 

       
 

 
    

   
          

 

 

   

   

 

Again, since we are assessing the impact of the estimated signal, we replace the eigenvalue with the 

square of the signal coefficient.  Therefore the total signal variance can be written like so when 

              .  These can be precomputed and stored once the signal modes are finalized. 

 

   
 

 
    

    

 

   

  

 

To perform the FFTs I use the FFTW algorithm implemented through MATLAB.  Note that this algorithm 

does not normalize the transforms.  In other words, transforming a function from Fourier space then 

back again will yield a result that differs from the original function by a factor of       .  As such, the 

numerical values of           will ultimately be scaled by          to be correct. 

 

 

 

Solving for the     and    Coefficients 
 



Fourier transforming one signal mode requires approximately 3 minutes on a single processor.  Because 

there are tens of thousands of modes, the full suite of transforms is quite expensive.  As a result, it pays 

to only have to do it once.  In this section I describe the code that gets this job done.  

 

Unlike the    coefficients ,which only depend on the signal eigenvectors and the resolution of the 

Fourier grid, the     coefficients also depend upon how many bins you choose to divide your power 

spectrum plot into.  It’s difficult to know exactly what number will be best a priori, so the code I outline 

below is flexible enough to solve for a suite of  -bins.  The timings below assume breaking into 3 

different sets of  -bins (6 total if you count both log-bins and equal-number-in-each bins). 

 

  signal/Eigen_kappa_R[ ]_[    ]_[    ]_bp62_Vectors_fwriteC 

                cells_grids/kg_[  ]_[ ]_fwriteR 

                         cells_grids/cgf_R[ ]_[    ]_[    ]_[     ]_[512]_[1240]_fwriteR 

    base/CMATLAB_fftmap_[512]_fwriteC 

       base/Cellcg_R[ ]_[512]_[1240]_fwriteR 

power_spectra/FFTEigenmodes.m ~ 3.12 min per R8 mode per processor 

                           ~ 2.5 days for R8 on 40 processors 

                                   ~ 18,500 R8 modes per day on 40 processors 

 

                            ~ 4.4 min per R7 mode per processor 

                           ~ 5.3 days for R7 on 40 processors 

                                   ~ 18,000 R7 modes per day on 40 processors 

    power_spectra/coef/Bmn[ ]_R[ ]_kappa_l[     ]_fwriteR 

    power_spectra/coef/Bmn[ ]_R[ ]_kappa_[     ]_fwriteR 

   power_spectra/coef/Cm[ ]_R[ ]_kappa_[512]_[1240]_fwriteC 

 

The first output     file contains coefficients where the bins are equally spaced in log-space.  The 

second output file contains coefficients where the bins each have an approximately equal number of  -

vectors in each bin. 

 

A limitation in the MATLAB parallelization toolbox restricts the number of processors per window to 12.  

To run on 40 processors, I split my operations into 4 groups of 10.  I run the code for a day, save the 

output then run for another day and a half to protect against lost work.  I place a value of         or   

in front of the     to indicate which of the 4 files I’m dealing with.  Ultimately these files are put back 

together again using the script below. 

 

    power_spectra/coef/Bmn[ ]_R[ ]_kappa_l[     ]_fwriteR 

    power_spectra/coef/Bmn[ ]_R[ ]_kappa_[     ]_fwriteR 

   power_spectra/coef/Cm[ ]_R[ ]_kappa_[512]_[1240]_fwriteC 

power_spectra/AggregatePower.m ~ couple of seconds 

    power_spectra/Bmn_R[ ]_kappa_l[     ]_fwriteR 

    power_spectra/Bmn_R[ ]_kappa_[     ]_fwriteR 

   power_spectra/Cm_R[ ]_kappa_[512]_[1240]_fwriteC 



 

A stripped-down, more efficient version of this algorithm is used for R6.  It is aggregated in the usual 

way using the routine referenced above. 

 

  signal/Eigen_kappa_R6_0p02_0p22_bp62_Vectors_fwriteC 

                cells_grids/kg_512_1240_fwriteR 

                         cells_grids/cgf_R6_0p02_0p22_bp62_512_1240_fwriteR 

    base/CMATLAB_fftmap_512_fwriteC 

       base/Cellcg_R6_512_1240_fwriteR 

power_spectra/FFTEigenmodesR6.m ~ 3.9 min per mode per processor 

                           ~ 7.5 days on 40 processors 

                                   ~ 14,600 modes per day on 40 processors 

    power_spectra/coef/Bmn[ ]_R6_kappa_l480_fwriteR 

   power_spectra/coef/Cm[ ]_R6_kappa_512_1240_fwriteC 

 

I wrote R6 specifically to create 480 bins with the idea that I could clump adjacent bins together to get 

other divisions like 30 bins or 48 bins.  More on this is written about below. 

 

A slimmed down version of this algorithm can be used to evaluate the spectral weighting coefficients for 

the W-space eigenmodes.  Here the number of bins is fixed at 30 and only the     coefficients for the 

logarithmically spaced   values are returned.   

 

  clean/Eigen_W_[sp02]_R[ ]_[    ]_[    ]_bp62_Vectors_fwriteC 

                cells_grids/kg_[  ]_[ ]_fwriteR 

                         cells_grids/cgf_R[ ]_[    ]_[    ]_[     ]_[512]_[1240]_fwriteR 

    base/CMATLAB_fftmap_[512]_fwriteC 

       base/Cellcg_R[ ]_[512]_[1240]_fwriteR 

power_spectra/FFTEigenmodesW.m ~ 6hrs for R16 on 40 processors 

                               ~ 22hrs for R8 on 40 processors 

                                ~ ? days for R7 on 40 processors 

    power_spectra/coef/Dmn[ ]_R[ ]_W_l[030]_fwriteR 

   power_spectra/coef/Em[ ]_R[ ]_W_[512]_[1240]_fwriteC 

 

The AggregatePower.m routine is still used for file combination.  (See the bottom of the code.) 

 

power_spectra/AggregatePower.m ~ couple of seconds 

    power_spectra/Dmn_R[ ]_W_l[030]_fwriteR 

   power_spectra/Em_R[ ]_W_[512]_[1240]_fwriteC 

 

The FFT code in C is constructed to only report the unique              Fourier vectors while the 

code in MATLAB returns the full (and largely redundant) set of   
  Fourier vectors.  I was unable to fully 

figure out how the two relate to one another, however.  Therefore my approach has been to filter the 



MATLAB output until it is identical in structure to the C output and then deal with it as I would have 

otherwise. 

 

In C, the ordering in each dimension goes like this: 

 

         
 

  
                 

  

 
    

  

 
   

  

 
             

 

The  ,   and   indices all start at zero.  With the   and   indices held fixed, the   indices vary most 

quickly.  They start at 0 and continue until      .  The negative side of the indices are the conjugates 

of the positive side so they are omitted (though must be doubled) in the C output.  The   index is 

incremented to 1, the   indices are run through, the   index goes to 2 and so on.  The   index is 

incremented to 1 only after the   index of -1 has concluded.  The kg table referenced in the table above 

contains this ordering explicitly.  The column sd equals 1 if the associated  -vector is unique and 2 if its 

complex conjugate exists but is omitted. 

 

In MATLAB this ordering is largely maintained.  By means of illustration, here’s how the ordering for 

    grid boxes in each dimension would look like to start. 

 

MATLAB          C 

1 0 0 0 1 

2 0 0 1 2 

3 0 0 2 3 

4 0 0 3 4 

5 0 0 4 5 

6 0 0 -3  

7 0 0 -2  

8 0 0 -1  

9 0 1 0 6 

10 0 1 1 7 

          
 

The values in white are those returned in C and referenced in the kg table.  The spaces in gray are filled 

in MATLAB but I can’t figure out with what.  So my first task was to create a mapping between the 

MATLAB and C coefficients. 

 

Each contiguous “block” of C coefficients has a size of        .  In all, there are    of these blocks for 

a total of           MATLAB coefficients I need to keep track of.  In this particular case I would want 

the coefficients      [1,2,3,4,5,9,10,11,12,13,17,…].  In other words, if I only call elements     from 

the output Fourier table in MATLAB, I should exactly recreate the result I would get in C. 

 

 

 



Boundaries of  -bins Equally Spaced in Log-Space 

 

The next step is deciding upon the appropriate boundaries of the  -bins.  My first approach is to equally 

space them in log-space.  Storage is a little tricky since there can be   different bin splittings and I didn’t 

want to create   separate tables and code them all by hand. 

 

What I do instead is stack them on top of one another.  Here’s an example of what the       table looks 

like when my bins are split into 4, 6 and 8 respectively. 

 

      

              

0.0025 0.0115 0.0070 

0.0115 0.0531 0.0323 

0.0531 0.2444 0.1488 

0.2444 1.1246 0.6845 

0.0025 0.0069 0.0047 

0.0069 0.0192 0.0130 

0.0192 0.0531 0.0361 

0.0531 0.1470 0.1000 

0.1470 0.4065 0.2768 

0.4065 1.1246 0.7656 

0.0025 0.0053 0.0039 

0.0053 0.0115 0.0084 

0.0115 0.0247 0.0181 

      
 

Next I need to figure out which  -vectors belong in which bins.  The    table has a list of modes that can 

easily be searched over to find which modes lie within any particular boundary. 

 

The question is how to save this information.  I have ordered the   in ascending order and saved them in 

the column vector  .  I save the corresponding C indices of the ordered  ’s to the column vector    .  

Then, using the limits in      , I go through each row one at a time and find the maximum value of   

that is <=     .  I mark the index (of    ) that belongs to this maximum and stick it into the table below.  

Of course, the first index must always be 1 and the final index must always be          . 

 

    

1 229 0.0070 389 

230 20,005 0.0323 38,641 

20,006 1,896,493 0.1488 3,763,737 

1,896,494 67,371,008 0.6845 130,414,961 

1 51 0.0047 81 

52 1008 0.0130 1839 

1009 20,005 0.0361 38,641 

20,006 414,535 0.1000 818,497 



414,536 8,697,581 0.2768 17,314,253 

8,697,582 67,371,008 0.7656 116,044,417 

1 23 0.0039 33 

24 229 0.0084 389 

230 2090 0.0181 3887 

       

 

The third column of     is identical to the third column of      .  For example, if I wanted to reference 

all of the   information for the elements where                  , I would type 

kg(ord(414536:8697581),:).  The fourth column contains the number of  -vectors that exist 

within the specified range of indices (i.e.  -values, but not including  =0).  The number includes the 

vectors doubled through   .  I added this fourth column after first running this routine for R8, so there’s 

a hack in power_spectra/nbl_fixer.m that fixes the files. 

 

 

 

Boundaries of  -bins with Equal Number of Vectors in Each Bin 

 

The other way to split the  -vectors into bins is by placing an equal number of vectors in each bin.  As 

mentioned in the previous section, I have ordered the   in ascending order and saved the corresponding 

C indices to the long column vector    .  Then I perform a cumulative sum over the corresponding    

elements to learn how many vectors have   magnitudes equal to or less than the value of    currently 

referenced.  The first and last indices are saved like so.  As before, the first index must always be 1 and 

the final index must always be          . 

 

    

1 16,840,099 0.3802 

16,840,100 33,654,260 0.5778 

33,654,261 50,488,942 0.6932 

50,488,943 67,371,008 0.8409 

1 11,232,801 0.3321 

11,232,802 22,445,818 0.5048 

22,445,819 33,654,260 0.6001 

33,654,261 44,876,120 0.6742 

44,876,121 56,104,042 0.7531 

56,104,043 67,371,008 0.8738 

1 8,428,224 0.3018 

8,428,225 16,840,099 0.4586 

16,840,100 25,248,224 0.5453 

      
 



The third column is the average of all the   magnitudes within the specified bin.  For example, if I 

wanted to reference all of the   information for the elements in the 4th of 6 bins, I would type 

kg(ord(33654261:44876120),:). 

 

 

 

 

Splitting Eigenmode Elements Across Grid Boxes and Fourier Transforming 

 

The next step is to split each eigenvector element fractionally amongst the grid boxes its cell intersects.  

The fastest way to do this, I think, is to identify all of the unique Cell ID’s and figure out the range of 

elements of     that belong to that cell.  The example below for R8 says that the grid box ID’s and 

cell/grid box fractions associated with the 4th cell (where CellID = 3) can be found between rows 167 and 

220 inclusive of the    ,    and      tables. 

 

   

0 

1 

2 

3 

4 

  
 

 

       

1 52 

53 106 

107 166 

167 220 

221 277 

    
 

The benefit of this system is that it allows me to relatively quickly populate a column vector where the 

first 52 elements equal         , elements 53 through 106 equal          and so on.  By multiplying this 

vector element-wise with the elements in (the equally long)     , I have instantly found the fractional 

value in each gridbox due to that particular mode.  I can then add these values to the grid boxes 

indicated in    and I’m ready to Fourier transform. 

 

The following subroutine breaks the signal into grid boxes, Fourier transforms it and exports the 

coefficients as they would be reported in C. 

 

gridFFT 

 

C index                            

1 0 0 0    1           

2 0 0 1    2           

3 0 0 2    2           

4 0 0 3    2           



5 0 0 4    1           

6 0 1 0    1           

7 0 1 1    2           

              

          -1 -1                 1                 
 

 

 

 

Binning Power and Solving for    and     

 

Every value of    for which      is actually standing in for two vectors, with the other lying on the flip 

side of the  -plane.  These powers must be doubled to account for the full Fourier space. 

 

This makes                particularly easy to calculate.  I merely need to multiply the    and    

columns element-wise and sum them up. 

 

The                  coefficients are saved into tables with the following structure, 

 

                     

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

           

 

Each column is reserved for the power due to one signal mode.  Column     contains the   value for 

that bin.  These values should be the points at which the power spectrum is plotted.  The logarithmically 

spaced bins have an additional column at the end containing the number of  -vectors that went into 

building that     coefficient. 

 

Because the     values are averages, they are evaluated somewhat differently than   .  Using the    

and     tables, the  —vectors corresponding to each    range is referenced.  The power in those grid 

boxes are multiplied element-wise by    and summed just like in   .  To get the average, though, one 

must also divide by the sum of that range’s    values. 

 



The         and        tables are subsequently separated and each       block is saved to its own 

file. 

 

 

Clumping the     Coefficients 

 

This will mostly reference the work I did for R6.  During the Fourier transforms R6 is split into 480 bins.  

The output     file looks something like this, 

  

 Mode 1 Mode 2  Mode N      

Bin 1                         

Bin 2                         

              
Bin 10                              

              
Bin 480                                   

 

Let    be the lower limit of the first bin.  Let    be the upper limit of the first bin and the lower limit of 

the 2nd bin.  Let    be the upper limit of the 2nd bin and the lower limit of the 3rd bin and so on.  Let the 

averages within the  th bin be denoted   .  (For the purposes of this exercise ignore the notation given by 

the table above.)  The first bin’s average is defined to be 

 

   
     

 
  

 

Suppose we are averaging over the first 4 bins.  We are looking for the quantity 

 

  
     

 
  

 

We can set up a matrix equation 

 

 

    
      

      
      

       
     

    
      

  

  

  

  

  

   

          

  

  

  

   

 

This allows us to solve for    and then solve for  .  When averaging over the next bin, the last    

becomes the new   . 

 



Recall that     is an average.  The total sum that was averaged was       
 where    

 is the number of 

 -vectors that went into the average of bin  .  If I was clumping the first 10 bins, I would add all these up 

and take their average, 

 

       
  
   

    
  
   

  

 

This is how the new     coefficient is defined.  With 480 to start with, there would be 48 of these per 

mode. 

 

    power_spectra/coef/Bmn_R[6]_kappa_l[480]_fwriteR 

power_spectra/BmnSplit.m ~ 4 seconds each 

    power_spectra/coef/Bmn_R[6]_kappa_l[030]_fwriteR 

 

I can also do splitting dynamically.  Instead of grouping 48 at a time, I can do consecutive groups with a 

different number of averaged   modes each time.  This can be useful since there is more spectral 

information available at large  .  To average it in the same way as the low   modes would discard 

information unnecessarily. 

 

The task then is to develop a method of dynamically splitting     according to my plotting needs.  I’m 

going to take a cue from Percival (2007) in setting up my splitting.  There are about 50 data points 

        , 8 in              ,  and 10 between              .  There are 7 more at   values 

less than that.  This leads to a total of 75 points.  This breakdown should give a sense of how many   

blocks to group together when defining in point on the power spectrum.  I think this sort of spacing 

might work out.  The sum of the elements in this vector is 480. 

 

 

 

    d…/power_spectra/coef/Bmn_R[ ]_kappa_l[480]_fwriteR 

power_spectra/BmnSplit2.m ~ few seconds 

    d…/power_spectra/coef/Bmn_R[ ]_kappa_l[B]_fwriteR 

 

I have to organize my splitting by letters since they are difficult to characterize by numbers alone.  

Here’s how they go. 

 

A: sp = [140,40,6,6,4*ones(1,25),2*ones(1,94)]; 

B: sp = [80,60,40,20,10,4*ones(1,24),2*ones(1,87)]; 

 

 

 



Plotted Power Spectra 
 

In this section I will introduce two methods by which to plot power spectra using the     coefficients – 

empirically and analytically.  I will display the spectra for  ,   ,    and    using both methods and the 

spectrum for    using only the empirical method. 

 

By default, the power spectra coefficient     are calculated in signal-space.  The code that follows will 

assume that this default is maintained.  (It is possible to do the same thing with the coefficients 

calculated in another space, like noise-space, but the results should be the same and in the interest of 

time I will forgo any additional investigation or investment in making the code more modular.)  Input 

vectors must be in cell-space.  The necessary rotation       into signal-space will be done by the 

code. 

 

The empirical method involves inputting a collection of actual vectors, finding the power spectrum of 

each and returning both the individual spectra and their average with error bars.  This code assumes the 

    coefficients are of the         variety. 

 

 

Analytical Method 

 

All Power Spectra 

 

Rather than find the power spectra of individual vectors, the analytical method finds the power spectra 

using the variances of various signal and noise components.  To plot their spectra these variances must 

be computed in signal-space, so let’s take each component individually.  Recall that a full vector in cell-

space            corresponds to            in signal-space. 

 

SIGNAL 

 

The variance of the signal along each dimension of signal-space is trivial, 

 

             
   

  

 

SHOT NOISE 

 

In signal-space, a shot noise overdensity vector is        .  The  th element of    equals       

          
 
   .  The variance of this component is 

 



                
           

 

   

 

                            
  

    

 

   

  

 

where      is the expected number of galaxies in the  th cell. 

 

ZERO-POINT NOISE 

 

In signal-space, a zero-point noise overdensity vector is         while in noise-space we have 

       .  It follows that        where      .  The  th element of    equals       

           
   .  The variance of this component is 

 

                
           

 

   

 

                            
   

   

 

   

  

 

DATA VECTOR 

 

Because signal, shot noise and zero-point noise are independent of one another, it follows that 

 

                     

                                        

 

            
   

      
   

   

 

   

      
  

    

 

   

  

 

Each dimension’s variance subsequently scales the     coefficients which are then combined to yield 

power spectra.  

 

                          

                     

              

base/Overdensities_DR6_R[ ]_[    ]_[    ]_bp62_fwriteR 

     signal/Eigen_kappa_R[ ]_[    ]_[    ]_bp62_Values_fwriteR 

    
 noiseMat_Vec/Eigen_DR6_R[ ]_[    ]_[    ]_beta_0p62_Values.txt 

  signal/Eigen_kappa_R[ ]_[    ]_[    ]_beta_0p62_Vectors_fwriteC 

  noiseMat_Vec/Eigen_DR6_R[ ]_[    ]_[    ]_beta_0p62_Vectors_fwrite 



    power_spectra/Bmn_R[ ]_kappa_l[     ]_fwriteR 

power_spectra/PkAnalytical.m ~ b/n 15 min and an hour 

           power_spectra/Pk_kappa_Analytical_R[ ]_l[     ]_fwriteR 

           power_spectra/Pk_eta_Analytical_R[ ]_[  ]_l[     ]_fwriteR 

           power_spectra/Pk_zeta_Analytical_R[ ]_l[     ]_fwriteR 

          power_spectra/Pk_data_Analytical_R[ ]_[  ]_l[     ]_fwriteR 

 

The following plot displays the power spectra of all three components and their sum. 

 

 
 

Here’s a closer look at the difference in power between the raw data and the clustering signal.  That the 

power differs by about 1000 suggests that the principle difference between the raw data and the signal 

is just shot noise. 

 



 
 

 

  



This time around I want to incorporate error bars into the power spectrum plots.  I reported earlier that 

 

       
    

 

   

  

 

where                  and    
  is the variance of the component (e.g. signal, zero-point noise, shot 

noise or data) along that mode.  The     coefficients are linearly independent.  Therefore the variance 

of the sum equals the sum of the variances, 

 

                
               

 

   

     
 

             
  

   

 

   

  

 

where 

         
   

                        

                               
   

 

and    is the number of  -modes for which            .   

 

It follows that the variance of the signal power is 

 

      
   

   
  

    
             

  

   

 

   

  

 

The variance of the shot noise power is 

 

      
   

   
      

  
    

 
    

 

             
  

   

 

   

  

 

The variance of the zero-point noise power is 

 

      
   

   
      

   
    

    
 
             

  

   

 

   

  

 

The variance of the data is 

 

      
   

        
   

   
   

   
   

  

                            
   

        
   

        
   

   



 

                  d…/signal/Overdensities_R[ ]_fwriteR 

     d…/signal/Eigen_kappa_R[ ]_Values_fwriteC 

 
   

 d…/noiseMat_Vec/Eigen_DR6_R[ ]_[    ]_[    ]_beta_0p62_Values_fwriteR 

  d…/signal/Eigen_kappa_R[ ]_Vectors_fwriteC 

  d…/noiseMat_Vec/Eigen_DR6_R[ ]_[    ]_[    ]_beta_0p62_Vectors_fwriteC 

    d…/power_spectra/coef/Bmn_R[ ]_kappa_l[B]_fwriteR 

             
   d…/power_spectra/coef/Bmn_R[ ]_kappa_Varl[B]_fwriteR 

power_spectra/PkAnalytical2.m ~ b/n 15 min and an hour if   is unknown 

  d…/power_spectra/M[ ]_fwriteC 

           
    d…/power_spectra/Pk_kappa_Analytical_R[ ]_l[A]_fwriteR 

           
    d…/power_spectra/Pk_eta_Analytical_R[ ]_[  ]_l[A]_fwriteR 

           
    d…/power_spectra/Pk_zeta_Analytical_R[ ]_l[A]_fwriteR 

             d…/power_spectra/Pk_data_Analytical_R[ ]_[  ]_l[A]_fwriteR 

 

power_spectra/PkPlots.m 

plots/thesis/Pk_components 

 

 
 

[caption: Analytic power spectra of overdensity components for cells of size 7, 11 and 16     Mpc.  

Points mark the power averaged over local  -modes.  Error bars are one standard deviation of the mean.  

Powers on scales smaller than the diameter of the cells are excluded from the figures.] 

 



Explaining the Zero-Point Noise Spectrum 

 

We can estimate the shape of the noise power spectrum a priori provided we understand something 

about the correlation function of the noise.  We often approximate the correlation function      as the 

ratio of the number of objects observed to the number expected, at some separation distance  .  In a 

three-dimensional space centered at any point, the expected number of evenly distributed point-pairs at 

a distance   scales as           . 

 

However, the correlated zero-point noise lies along a stripe, not a spherical shell.  When this planar 

geometry intersects the shell, a ring of radius   results.  Zero-point noise clustering is only permitted in 

this ring where the number of point pairs scales as     .  However, the stripe also has a non-zero width 

which effectively increases the number of pairs to    where    . 

 

The zero-point noise correlation function       may be approximated as 

 

          
  

   
   

     

    
         

 

Translating an isotropic correlation function to a power spectrum occurs in the usual way, 

 

                
       

  
        

 

    
  

 

From this analysis, we expect       to go as something between     and    .  As we see in the figure 

above, this is essentially what results. 

 

We note that the zero-point spectrum flattens at                    or            .  This 

roughly corresponds to the largest scales at which the zero-points still have an impact.  The longest 

SEGMENTs still appreciable in number have lengths of about    .  At redshifts where      is large, this 

corresponds to physical distance separations ranging from about           at        to 

          at       .  This falls more or less in line with what is revealed by the power spectrum. 

 

 



 
 

 

Empirical Method 

 

An ensemble of simulated data vectors is used to plot power spectra. 

 

  clean/shot/delta_R[ ]_[  ]_[      ]_fwriteC 

   clean/shot/delta_kappa_R[ ]_[  ]_[      ]_fwriteC 

   clean/shot/delta_eta_R[ ]_[  ]_[      ]_fwriteC 

   clean/shot/kappahat_R[ ]_[  ]_[      ]_fwriteC 

  signal/Eigen_kappa_R[ ]_[    ]_[    ]_beta_0p62_Vectors_fwriteC 

    power_spectra/Bmn_R[ ]_kappa_l[     ]_fwriteR 

power_spectra/PkEmpirical.m ~  

           power_spectra/Pk_kappa_Empirical_R[ ]_l[     ]_fwriteR 

           power_spectra/Pk_eta_Empirical_R[ ]_[  ]_l[     ]_fwriteR 

           power_spectra/Pk_zeta_Empirical_R[ ]_l[     ]_fwriteR 

          power_spectra/Pk_data_Empirical_R[ ]_[  ]_l[     ]_fwriteR 

            power_spectra/Pk_kappahat_R[ ]_l[     ]_fwriteR 

 

Lk 

 



 
 

If the magnitude of the zero-point noise increases by a factor of 12, the power of that noise increases by 

a factor of 144. 

 

 
 

Though the results for R7 are similar, the power does appear to increase in amplitude across the board. 

 

 



  

 
 

The previous two plots suggest that while the estimated signal is closer to the real signal (in a two-norm 

sense) than the raw data is to the real signal, the signal estimation method removes a bit too much 

noise.  The fact that the estimated power spectrum lies below the true signal spectrum suggests that 

some portion of the signal was interpreted to be noise and removed inadvertently.  The next two plots 

illustrate this on a linear scale.  

 



  
 

Under ideal circumstances the power of the deprojected noise,        , would exactly equal the sum 

of the power of the zero-point and shot noise terms.  As shown above, our method removes a bit more 

noise than is actually present.  This leads to       somewhat underestimating   and the residual 

        somewhat overestimating the actual amount of noise present      . 

 

 
 

We examine the correlations between the band powers of the estimated signal’s power spectrum.  The 

figure below shows 

 

       
   

       

  

 

where                     . 

 



 
 

The large scale modes are highly correlated, likely due to the finite survey window.  The smallest scale  -

modes have sizes on the order of the cell diameters, wherein little information can be gleaned. 

 

 

Bias Investigation 
 

Power Spectrum Adjustment 

 

My answer in W-space is             
    

.  Before being saved to file, they are rotated back into cell-

space.  In terms of evaluating power spectra we rotate into signal-space.  To make the notation more 

concise, let 

 

                  

 

While       may be the best unbiased solution for the signal in signal-space,              is not the best 

unbiased solution for its power.  To see why, consider that there will always exist a discrepancy   

between the true signal   and its estimate such that       .  The power spectrum of the true signal 

differs from that of the estimated signal, 

 

                                      

                               
 
                          

 

The power in the  th bin is 

 



          
     

 

   

             

 

   

     
     

 

   

  

 

To see where the second term comes from, 

 

                 

 

   

                         

 

   

  

 

                                

 

   

   

 

The signal modes are orthonormal and terms survive only when    .  Finally, 

 

           
               

      

 

   

  

 

This serves as the average power of the unbiased power spectrum                 using the signal 

estimates.  I find empirically that                      equals exactly zero (at least to machine 

precision).  I did so with the code PkBias.m described in the next section. 

 

 

Best Unbiased Power Estimate 

 

The code below creates all of the power spectra needed to show the improvement of the unbiased 

power derived through        over the power derived through  .  A verification that the bias correction 

introduced in the last section does in fact bring    and        onto equal footing is provided.  The error 

bars given on the differences are the errors on the mean, not the errors on the individual differences. 

 

The best unbiased power estimate in the  th column is calculated like so, 

 

              
       

 

   

  

 

      clean/shot/kgd_R[ ]_sp[02]_[      ]_fwriteC 

       clean/shot/s2gd_R[ ]_sp[02]_[      ]_fwriteC 

  clean/shot/delta_R[ ]_[  ]_[      ]_fwriteC 

   clean/shot/delta_kappa_R[ ]_[  ]_[      ]_fwriteC 

  signal/Eigen_kappa_R[ ]_[    ]_[    ]_beta_0p62_Vectors_fwriteC 



    power_spectra/Bmn_R[ ]_kappa_l[30]_fwriteR 

power/PkBias.m ~ 2000 vectors in (21/12/4) minutes for R7/R8/R16 

                                        

         ,        ,   of that average, 

            ,   of that average 

power_spectra/Pk_kgd_bias_R[ ]_l[     ].txt 

 

The figure below summarizes my findings.  In brief, there is a large difference between the power 

spectrum of the signal and the power spectrum of the data.  If the data is replaced with a signal estimate 

through        that difference nearly vanishes. 

 

 
 

 

 

  Scaling 

 

To understand why the signal is being systematically underestimated, we modify   
      

   

         by introducing a scalar factor  .   

  
   t…/noiseMat_Vec/Sigma_nu_inv_[  ]_R[ ]_[    ]_[    ]_bp62_fwriteC 

  
   signal/Sigma_kappa_inv_R[ ]_[    ]_[    ]_bp62_fwriteC 

  clean/shot/delta_R[ ]_[  ]_[      ]_fwriteC 

   clean/shot/delta_kappa_R[ ]_[  ]_[      ]_fwriteC 

   clean/shot/delta_eta_R[ ]_[  ]_[      ]_fwriteC 

    power_spectra/Bmn_R[ ]_kappa_l[30]_fwriteR 

clean/WspaceAlpha.m ~ 11hr for diagonalization, 15min for   
     (R8) 

  g…/clean/Eigen_W_[  ]_R[ ]_[    ]_[    ]_bp62_alpha[ ]_Vectors_fwriteC 

     
 g…/clean/Eigen_W_[  ]_R[ ]_[    ]_[    ]_bp62_alpha[ ]_Values_[.txt,fwriteR] 

      g…/clean/shot/kgd_R[ ]_sp[02]_[1,2]alpha[ ]_[      ]_fwriteC 

 



When reconstructing the signal      , we have a choice of using   
    or    

   .  If the former, use “1” 

in its filename.  If the latter, use “2”. 

 

The   and    datasets used in the simulations are identical for all  .  The magnitude of noise equals the 

magnitude of the difference between the data and the signal,         
                  .  

Prior to cleansing, the magnitude of the signal is                .  The magnitude of the data is 

              . 

 

R7 

  
        

         

            
using   

    
Drop in noise 

variance 
               

0.985                     45%                     

0.99                     45%                     
1.00                     45%                     

 

The   and    datasets used in the simulations are identical for all  .  The magnitude of noise equals the 

magnitude of the difference between the data and the signal,         
                  .  

Prior to cleansing, the magnitude of the signal is                .  The magnitude of the data is 

              . 

 

R8 

  
        

         

            
using   

    
Drop in noise 

variance 
               

0.90                     36%                     

0.98                      38%                     
0.987                      38%                     

0.99                      38%                     
1.00                     38%                     

 

 

The   and    datasets used in the simulations are identical for all  .  The magnitude of noise equals the 

magnitude of the difference between the data and the signal,         
                  .  

Prior to cleansing, the magnitude of the signal is               .  The magnitude of the data is 

              . 

 

R16 

  
        

         

            
using   

    
Drop in noise 

variance 
               

0.50                    59%                    
0.80                    77%                   
0.90                    78%                   
1.00                    78%                   



1.20                    78%                   
 

 

Keeping the test vectors the same, here’s how the residual works out when we scale the noise term 

when computing  . 

 
 

 

 
 

 

 



 
 

  



For R16, the residual noise appears most unbiased when      .  I repeated the same experiment with 

R8.  The diagonalization of W-space took about half a day, but here’s the result.  From this it appears 

that to make this R8 estimator unbiased        . 

 

 

 
 

 

 

 

 

  



Results – Estimated Signal 
 

Each signal estimate    will possess its own power spectrum, 

 

         
    

 

   

  

 

In this section I will use an ensemble of signal estimates to plot the average power of the recovered 

signal.  By comparing this spectrum to         I can quantify the effect of deprojecting the zero-point 

offsets as a function of  .  I can also calculate the covariance matrix of the binned power to see how 

much estimates in one bin affect those in others. 

 

    clean/shot/kappahat_given_delta[ ]_R[ ]_[  ]_1e5_fwriteC 

     signal/Eigen_kappa_R[ ]_[    ]_[    ]_bp62_Values_fwriteR 

        base/pkbao_ConvR[ ]_fwrite 

    power_spectra/Bmn_R[ ]_kappa_l[     ]_fwriteR 

    power_spectra/Bmn_R[ ]_kappa_[     ]_fwriteR 

   power_spectra/Cm_R[ ]_kappa_[512]_[1240]_fwriteC 

power_spectra/PkOfKappaHat.m ~ < 1 minute 

                

               
power_spectra/PkKappahat_R[ ]_[  ]_[l,][     ]_[  ]_fwriteR 

       power_spectra/SigSqPk_R[ ]_[  ]_[  ]_fwriteR 

                 power_spectra/CovPkKappahat_R[ ]_[  ]_[l,][     ]_[  ]_fwriteC 

 

In the table above, the first output files contains 1 rows for every  -bin.  If space were less of an issue, I 

would have written the output like this:                                   .  The identifier    is a 

number indicating how many    vectors went into the average power at each   value        .  The 

standard deviation of the powers that comprise that average are denoted       .  The final column 

subtracts the fiducial power spectrum from the recovered signal power spectrum to see how much they 

differ on various length scales.  For consistency I say that in this application, 

 

            
   

   

 

   

  

The second output table contains the integrated power over all length scales.  The  th column contains 

the integral (but really a sum) for the  th solution of   , 

 

       
 

 
    

    

 

   

  



 

The final output table contains the covariance matrix of the recovered signal power spectrum.  Under 

normal circumstances, there should be no cross-correlations between powers at different length scales.  

But because of the intersections between the signal and zero-point modes, this relationship breaks 

down and correlations will be induced. 

 

The code also contains scripts that create the following plots.  Let’s start with the power spectrum of the 

estimated signal. 

 

 
 

Reconstructing the power spectrum using the     coefficients and the   
   

 variances very closely 

matches the fiducial power spectrum.  This suggests that my process of finding the power of each 

eigenmode in each Fourier bin is working correctly. 

 

Here’s a plot of the                coefficients.  While each of the signal eigenmodes has an 

amplitude of 1, the total Fourier power for each mode is not constant.  This shouldn’t come as a 

surprise, however.  The higher order modes tend to capture higher frequency behavior.  These higher 

frequencies are the ones most smoothed by the survey window, reducing their amplitudes.  As such, the 

sum of all the Fourier amplitudes should decrease somewhat for the modes with higher frequencies and 

that’s essentially what we observe here. 

 

 
 



The integrated power shows a similar decrease, 

 

               

                         

 

The stated error is one standard deviation of an ensemble of 43    solutions. 

 

The covariance matrix of the reconstructed signal powers                  is shown below in 

grayscale, 

 

We can compare the power spectrum of the raw data (i.e. with zero-point and shot noise) with that of 

the estimated signal.  These routines use an adapted form of the old code, 

 

power_spectra/PkOfKappaHat2.m ~ < 1 minute 

 

My first approach is to find the zero-point noise variance in each dimension of signal-space.  An 

individual noise vector in signal-space equals        where      .  The variance of the noise 

along the  th dimension of signal-space should be 

 

                         

 

   

       
           

 

   

      
   

   

 

   

  

 

By a similar argument,        .  It follows that 

 

                     

                                        



 

            
   

      
   

   

 

   

      
  

    

 

   

  

 

At this point I should be able to plot the spectrum using the     coefficients derived from the signal 

eigenmodes. 

 

 
 

The difference on small scales is likely due to the shot noise. 

 

 
 

The following plot contains the same information as above in blue.  In red, the  th data point equals 

                  .  The bump indicates the estimated signal loses power relative to the fiducial at 

intermediate redshifts, but overall the difference for these 43 vectors is consistant with zero.  The 

spread is gigantic, though, at about     at the lowest  . 

 

 



 
 

This plot indicates that the signal estimator is largely unbiased since                  is consistant with 

zero.  There is some departure from zero at intermediate length scales, thought, so there is a possibility 

that bias exists there.  There may be little we can do about this, but it is still improving the signal 

estimate so our gains outweigh our losses. 

 

 

 

The scale of this noise spectrum appears to be off by at least a couple orders of magnitude so I felt it 

worthwhile to try plotting it again in two different ways to enhance our confidence in it.  Rather than do 

it empirically off a collection of    (actually   ), I choose to do it throught a collection of the noise 

eigenvalues.  I must be careful to multiply the noise eigenvalues by   
 .  

 

  signal/Eigen_kappa_R[ ]_[    ]_[    ]_beta_0p62_Vectors_fwriteC 

  noiseMat_Vec/Eigen_DR6_R[ ]_[    ]_[    ]_beta_0p62_Vectors_fwrite 

    
 noiseMat_Vec/Eigen_DR6_R[ ]_[    ]_[    ]_beta_0p62_Values_fwrite 

    power_spectra/Bmn_R[ ]_kappa_l[     ]_fwriteR 

    power_spectra/Bmn_R[ ]_kappa_[     ]_fwriteR 

    power_spectra/Bmn_R[ ]_eta_l[     ]_fwriteR 

    power_spectra/Bmn_R[ ]_eta_[     ]_fwriteR 

power_spectra/NoiseSpectrum.m ~  

 



My first approach is to find the zero-point noise variance in each dimension of signal-space.  An 

individual noise vector in signal-space equals        where      .  The variance of the noise 

along the  th dimension of signal-space should be 

 

                         

 

   

       
           

 

   

      
   

   

 

   

  

 

At this point I should be able to plot the spectrum using the     coefficients derived from the signal 

eigenmodes. 

 

The second method requires that I solve for the     coefficients for the noise and plot the spectrum 

above just as I have for the signal, but swapping out      for   
       

   
. 

 

  noiseMat_Vec/Eigen_DR6_R[ ]_[    ]_[    ]_beta_0p62_Vectors_fwrite 

                cells_grids/kg_[  ]_[ ]_fwriteR 

                         cells_grids/cgf_R[ ]_[    ]_[    ]_[     ]_[512]_[1240]_fwriteR 

    base/CMATLAB_fftmap_[512]_fwriteC 

       base/Cellcg_R[ ]_[512]_[1240]_fwriteR 

power_spectra/FFTEigenmodes.m ~ 2.54 min per R8 mode per processor 

                          ~ 2 days for R8 on 40 processors 

                                   ~ 22,200 R8 modes per day on 40 processors 

    power_spectra/coef/Bmn[ ]_R[ ]_eta_l[     ]_fwriteR 

    power_spectra/coef/Bmn[ ]_R[ ]_eta_[     ]_fwriteR 

   power_spectra/coef/Cm[ ]_R[ ]_eta_[512]_[1240]_fwriteC 

 

Finally, I double the magnitude of the zero-points from         to         with the expectation 

that the overall noise power should quadruple. 

 

The result from the rotation method is identical to the one I got empirically.  However, the one I get 

from the     coefficients in noise-space give the same shape with a higher magnitude.  The two match 

up fairly well at small scales (where there are plenty of  -vectors in each bin) and diverge only around 

             .  

 



    
 

 

I define the dimensionless variance as 

 

                

              
  

 

Here’s how the plot comes out if I include all of the modes. 

 
 

The correlations between the large scale  -modes is understandable because of the finite volume size.  

As we add more modes into the volume they become increasingly dependent.  A maximum of about 

0.15 is very good because we expect because of the survey window that these large scale modes would 

be highly correlated. 

 

For a Gaussian power spectrum we would expect this to go to a constant of 2 or 3 along the diagonal 

after you normalize it.  It’s unclear why the diagonal doesn’t go to a constant. 

 

According to Mark, the covariance matrix of the power spectrum goes as something like 

 

    
    

  
     



 

Perhaps the best way to look at the statistic, though, is through something like 

 

       
   

       

  

 

If I limit myself to only consider the 16 of 200  -bins that contain more than 200 vectors, then the scree 

plot of                  looks like the figure below.  Almost all of the signal is contained in the first 

mode.  Things seem relatively Gaussian. 

 

 

 
  

Results – With Noise Power 
 

In this section I overplot the power spectra of the zero-point noise and raw data to see how they 

compare to the power spectrum of the signal itself.  To do this, I will rotate my test vectors    and   

into their signal-space coefficients and plot them as I did the estimated signal, 

 

         

           

 

The power in the  th bin due to a single vector should then be 

 

        
    

 

   

                   
    

 

   

  

 

while the integrated power will be 

 

       
 

 
   

    

 

   

              
 

 
   

    

 

   

  



 

 

    clean/shot/kappahat_given_delta[ ]_R[ ]_[  ]_1e5_fwriteC 

     signal/Eigen_kappa_R[ ]_[    ]_[    ]_bp62_Values_fwriteR 

        base/pkbao_ConvR[ ]_fwrite 

  clean/shot/d_R[ ]_[  ]_[      ]_fwriteC 

   clean/shot/dn_R[ ]_[  ]_[      ]_fwriteC 

    power_spectra/Bmn_R[ ]_kappa_l[     ]_fwriteR 

    power_spectra/Bmn_R[ ]_kappa_[     ]_fwriteR 

   power_spectra/Cm_R[ ]_kappa_[512]_[1240]_fwriteC 

power_spectra/PkOfKappaHat2.m ~ < 1 minute 

                

               
power_spectra/PkKappahat_R[ ]_[  ]_[l,][     ]_[  ]_fwriteR 

       power_spectra/SigSqPk_R[ ]_[  ]_[  ]_fwriteR 

                 power_spectra/CovPkKappahat_R[ ]_[  ]_[l,][     ]_[  ]_fwriteC 

 

 

 

  



Cross-Correlations b/n Estimated Signal and Zero-Point Noise 
 

The following code investigates the cross-correlations between the power spectra of the zero-point 

noise and estimated signal.  The output is a 30x30 text table with correlation values.  I explictily evaluate 

the correlations as, 

                   
      

                                
          

       

                   

  

      clean/shot/kgd_R[ ]_sp[02]_[      ]_fwriteC 

   clean/shot/delta_eta_R[ ]_[  ]_[      ]_fwriteC 

  signal/Eigen_kappa_R[ ]_[    ]_[    ]_beta_0p62_Vectors_fwriteC 

    power_spectra/Bmn_R[ ]_kappa_l[     ]_fwriteR 

clean/SNcrossCorr.m ~ 20 min or less 

               
  clean/Corr_Pkgd_Pdeltaeta_R[ ]_sp[02]_[     ].txt 

 

The first 5 rows and columns on the bottom and right relate to the scale size of the spheres.  The values 

of the correlations are represented in gray scale.  Each row contains the correlation coefficients 

between the power in a particular  -band of        and the power in all of the  -bands of    
.  The 

figure below is for R7 when        . 

 



 

 

 

 

 

 

 

For plotting, there is netplotlib in Python, sm (supermongo) and R.   

 

 

  



 
 

 

 
 



 


