
Metropolis

Contents
Notation .. 2

Signal Prediction Through Bayes’s Theorem .. 3

Analytic W-Space Solution .. 5

Linear Estimator .. 5

Quadratic Estimator .. 10

Sampling with Metropolis-Hastings .. 12

The Metropolis-Hastings Method ... 12

Independent Candidate Density ... 12

W-Space .. 15

Sampling Algorithm ... 18

Trace Plots ... 20

Expected Signal and Variance ... 22

Results – R8 ... 22

 .. 22

 .. 27

Results – R7 ... 29

Residual Noise ... 33

Faster Signal Estimates ... 34

Expected Shot Noise and Zero-Point Noise .. 36

Efficiently Solving for ... 37

Testing the Shot Noise Estimator .. 38

Testing the Zero-Point Noise Estimator .. 40

Analysis of Power Spectrum ... 46

Power in Bins... 46

Integrated Power .. 47

Solving for the and Coefficients ... 48

Boundaries of -bins Equally Spaced in Log-Space .. 52

Boundaries of -bins with Equal Number of Vectors in Each Bin ... 53

Splitting Eigenmode Elements Across Grid Boxes and Fourier Transforming 54

Binning Power and Solving for and .. 55

Clumping the Coefficients ... 56

Plotted Power Spectra .. 58

Analytical Method ... 58

Empirical Method .. 65

Bias Investigation .. 69

Power Spectrum Adjustment .. 69

Best Unbiased Power Estimate ... 70

 Scaling .. 71

Results – Estimated Signal .. 76

Results – With Noise Power .. 83

Cross-Correlations b/n Estimated Signal and Zero-Point Noise ... 85

Notation

An overdensity vector contains signal plus photometric zero-point noise plus shot noise. It can be

represented in three different bases as listed below,

I will occasionally work with the noise terms as a unit using and .

We can rotate between cell-space and either W-space or signal-space using an eigenvector matrix or

 respectively,

 results from the diagonalization of the following sum of inverses of the signal and noise covariance

matrices,

where

I distinguish between simulated overdensity realizations using superscripts. For example, the cell-space

vector corresponds to in W-space components.

Signal, zero-point noise and shot noise can be fully specified for simulated cases.

Photometric zero-point noise realizations are generated in segment-space. There are 2052 SEGMENTs in

DR6, each one of which has a i.i.d. zero-point offset
 . The covariance matrix of the zero-

point offsets in segment-space is therefore diagonal with every non-zero element equal to
 .

There is a mapping matrix that rotates the overdensities due to the zero-points back into cell-space,

 such that

Shot noise is diagonal in cell-space where and is the number of galaxies expected

in the th
 cell. This value is determined from the galaxy selection function.

Instances of , , and are each the result of a Gaussian random process and therefore can be

parameterized in terms of the Gaussian variates that comprise them. I will represent this parameterized

format as where the full parameterization vector . The

parameters can also be grouped into subsets. One convenient representation, as we will see, is

 where .

However, the universe contains only one actual overdensity vector for which I reserve the symbols ,

and for cell, signal and W-spaces respectively,

In the real world, only the left-hand sides of the equations are known. When we are running diagnostics,

all terms can be specified.

Signal Prediction Through Bayes’s Theorem

The expected value of the th
 signal coefficient can be expressed as a function of the posterior probability

of a partial overdensity model given the data,

If I let represent random variates drawn from the distribution , the estimated signal given

the data is, through a Monte Carlo process,

in cell-space and

in W-space. It should be the case that

There is no immediately obvious way to generate variables from directly, so I invoke Bayes’s

theorem,

where

and

Multiplying and expanding,

The term

 is constant and can be disregarded in this proportion. and is

orthonormal, therefore

where
 .

 is an -dimensional vector with degrees of freedom. We have the freedom to choose any

parameters that most conveniently map . A natural choice is for all .

We note that number of degrees of is while the dimensionality of W-space is only ,

a fact that might suggest information is being discarded. However, both the shot noise and zero-point

noise processes can be entirely represented within dimensional cell-space. Consequently, their sum can

also be expressed in dimensions. Since we do not deal with the underlying degeneracies between these

two types of noise, combining them in this fashion will not impede our estimation of the signal

parameters .

Analytic W-Space Solution

Linear Estimator

The expected value of the th
 signal coefficient can be expressed as a function of the posterior probability

of a partial overdensity model given the data,

I invoke Bayes’s theorem,

where

and

Multiplying and expanding,

 and is orthonormal, therefore

where
 .

To normalize this function I note that and therefore

and

Given that the signal we seek to estimate is -dimensional, we have the freedom to choose any

parameters that most conveniently map or . The form of the probability distribution

function suggests a natural choice of for all . From this perspective, it is more convenient to

solve the problem

Because of the diagonality of , the expression for is separable in the exponent,

All but one of the integrals in the numerator and denominator will cancel,

We integrate over all possible values of from to .

Once all values of are evaluated, the solution in cell-space can be found through one final rotation

 . It should also be clear that

Likewise, the expected value of the signal squared can be found through integration,

This implies that the variance of the solution in W-space is

From my observations of the R7, R11 and R16 cases

 . It is also interesting to note that the

variance of the solution is independent of . I assume that if the variance is independent of the data in

one space, it must be in all the other spaces as well.

 clean/shot/delta_R[]_[]_[]_fwriteC

 clean/Eigen_W_[]_R[]_[]_[]_bp62_Values_fwriteR

 clean/Eigen_W_[]_R[]_[]_[]_bp62_Vectors_fwriteC

 t…/clean/Sigma_nu_inv_W_[]_R[]_[]_[]_bp62_fwriteC

clean/MHK.m ~ 15 sec for 200 vectors, R8

 clean/shot/kgd_R[]_sp[02]_[]_fwriteC

This solution is general to any Gaussian signal and noise and is applicable for any systematic pattern on

the sky.

As a sanity check, we examined the covariances between . We expect that the for cells

intersecting the same SEGMENT should be more positively correlated with each other than with the

values corresponding to cells that do not. We selected the longest SEGMENT in our simulation (the one

corresponding to ’s th column) and found that it intersects 2019 cells. One of those cells (the one

corresponding to ’s th row) was selected at random.

Using 10,000 realizations, we calculated for each of the 2019 cells that share a

SEGMENT with #534. We found that the average covariance was with a standard deviation of

 . The average covariance between cell #534 with the cells that don’t share the same SEGMENT

was with a standard deviation of . I repeated calculation for cell #881 and found a

covariance of for cells intersecting the same SEGMENT and for cells

that do not.

While this is admittedly a small measurement sample, it provides evidence that the estimated signal in

cell-space has a covariance structure linked to the cell/SEGMENT intersections. (I could have extended

this, but it would have been time consuming and I don’t know whether it’s worthy of publication in any

event.)

Quadratic Estimator

We can also solve for the expected signal squared in W-space and in signal-space. If we define

 , then . For a particular element

 clean/Eigen_W_[]_R[]_[]_[]_bp62_Vectors_fwriteC

 signal/Eigen_kappa_R[]_[]_[]_beta_0p62_Vectors_fwriteC

SmallCode.m (J) ~ (284/56/18/1) minutes for R6/R7/R8/R16

 g…/clean/M[]_[sp02]_[]_[]_[bp62]_fwriteC

The signal coefficient squared in signal-space is found through a double sum over the signal coefficients

in W-space,

I’m not 100% confident that this next step is true, but let’s argue that

I’ll try to rearrange to make the computation more efficient,

I can define a quantity or . Then,

 clean/shot/delta_R[]_[]_[]_fwriteC

 clean/Eigen_W_[]_R[]_[]_[]_bp62_Values_fwriteR

 clean/Eigen_W_[]_R[]_[]_[]_bp62_Vectors_fwriteC

 t…/clean/Sigma_nu_inv_W_[]_R[]_[]_[]_bp62_fwriteC

 g…/clean/M[]_[sp02]_[]_[]_[bp62]_fwriteC

clean/MHKs2.m ~ 10,000 vectors in (17/8/1) minutes for R7/R8/R16

 clean/shot/s2gd_R[]_sp[02]_[]_fwriteC

Sampling with Metropolis-Hastings

The Metropolis-Hastings algorithm is a Markov chain Monte Carlo method for generating realizations

from a distribution that is difficult to sample directly. To use Metropolis-Hastings it is sufficient to have

a function that is proportional to that distribution. This is certainly the case with this problem. I wish to

sample and possess an analytic form for .

The Metropolis-Hastings Method

To simplify notation, let the unscaled posterior density be denoted

Let us also introduce an independent candidate density that will ideally match the correlation

structure of but with a broader tail so that the former “blankets” the latter. I will derive the exact

form of this distribution in the next section.

The steps for the Metropolis-Hastings method are as follows:

1. Choose an initial set of signal parameters that preferably lies near the peak of .

2. Repeat the following steps times for :

a) Draw a new random vector from .

b) Calculate the acceptance probability where

c) Draw a random variate from the uniform distribution .

d) If , then set and accept as one of the random variates of

 . Otherwise, set .

Independent Candidate Density

We select an independent candidate density that has approximately the same shape as the target

distribution . A reasonable first guess is a multivariate Gaussian distribution that peaks in the

same place as - let’s call it - and has the same curvature as at . However, in

practice the Gaussian is usually not broad enough to provide adequate coverage at the tails of .

A better candidate density is the multivariate -distribution . This density function should have

the same peak and curvature at the peak as the Gaussian, but at low degrees of freedom it is more

adequate for representative sampling. (As increases, thins and asymptotically approaches the

multivariate Gaussian distribution – we do not want to go too far in this direction.)

To find the peak and curvature we begin with the logarithm of the target density,

I note that a function and its logarithm have maxima located at the same position. The first derivative of

 where is

Setting this equal to zero reveals the location of the target density’s maximum,

In practice, , and .

The inverse of the target density’s second derivative at yields the curvature of a multivariate

normal that peaks at the same location

This simplifies to
.

Dropping the constant terms (since they cancel anyway), my independent candidate distribution adopts

the form of ,

To sample from this distribution, I begin by solving for the lower triangular matrix that satisfies the

Cholesky decomposition . The diagonality of yields a simple solution,

When a set of random variables is drawn from the -distribution with ,

the vector

will constitute a random draw from .

W-Space

It’s predictably time-consuming to generate two inverses and the diagonalization of their sum. Be sure to

forcibly symmetrize the matrices before inversion or diagonalization. Otherwise small numerical

discrepancies will cause the processes to take forever.

base/Overdensities_DR6_R[]_[]_[]_bp62_fwriteR

 signal/Sigma_kappa_R[]_[]_[]_bp62_fwriteC

 cells_grids/A_DR6_R[]_[]_[]_bp62_fwriteR

clean/Wspace.m ~ 5.3hr for

, 19hr for

, 11hr (29.5hr – R7) for

diagonalization, 15min for
 (R8)

 t…/noiseMat_Vec/Sigma_nu_inv_[]_R[]_[]_[]_bp62_fwriteC

 signal/Sigma_kappa_inv_R[]_[]_[]_bp62_fwriteC

 clean/Eigen_W_[]_R[]_[]_[]_bp62_Vectors_fwriteC

 clean/Eigen_W_[]_R[]_[]_[]_bp62_Values_fwriteR

 t…/clean/Sigma_nu_inv_W_[]_R[]_[]_[]_bp62_fwriteC

R6

 g…/signal/Sigma_kappa_R6_0p02_0p22_bp62_fwriteC

clean/Wspace.m ~ 2.25 days for

, 9.8 days for

 , 6.7 days for

diagonalization, 3.4 hours for

 t…/noiseMat_Vec/Sigma_nu_inv_[]_R6_0p02_0p22_bp62_fwriteC

 signal/Sigma_kappa_inv_R6_0p02_0p22_bp62_fwriteC

 clean/Eigen_W_[]_R6_0p02_0p22_bp62_Vectors_fwriteC

 clean/Eigen_W_[]_R6_0p02_0p22_bp62_Values_fwriteR

 t…/clean/Sigma_nu_inv_W_[]_R6_0p02_0p22_bp62_fwriteC

Because W-space is dominated by shot noise, we expect eigenvectors to be highly localized in cells. The

zero-point noise, which is of a lower magnitude, should introduce some leakage of those modes into

cells that lie within the same SEGMENT.

Upon inspection, we discovered that for most of the lower order () modes the eigenvector

elements were effectively zero everywhere except in about 1 to 4 adjacent cells, matching our

expectations. (The pixels are too small and dim to be visible in this document, so refer to the saved

images in the notes folder if you want to examine them.) The eigenvectors become much more diffuse

at higher orders.

The test vectors can be rotated into W-space.

 clean/shot/delta_R[]_[]_[]_fwriteC

 clean/shot/delta_kappa_R[]_[]_[]_fwriteC

 clean/shot/delta_eta_R[]_[]_[]_fwriteC

 clean/Eigen_W_[]_R[]_[]_[]_bp62_Vectors_fwriteC

clean/ScriptdRealz.m (E) ~ < 1-6 min for 200 realizations

 clean/shot/W_d_R[]_[]_[]_fwriteC

 clean/shot/W_ds_R[]_[]_[]_fwriteC

 clean/shot/W_dn_R[]_[]_[]_fwriteC

Our cleansing algorithm is underestimating the true signal and overestimating the true noise. This

suggests there’s some sort of overweighting of the noise in W-space. To quantify this, I modify

 by introducing a scalar factor where

 . In the interest of time, I

only test for R16. This code runs the same as before, but just run the lines with the comment “only use

with alpha scaling” instead.

clean/Wspace.m ~ 11hr for diagonalization, 15min for
 (R16)

 clean/Eigen_W_[]_R[]_[]_[]_bp62_alpha[]_Vectors_fwriteC

 clean/Eigen_W_[]_R[]_[]_[]_bp62_alpha[]_Values_fwriteR

 t…/clean/Sigma_nu_inv_W_[]_R[]_[]_[]_bp62_alpha[]_fwriteC

Sampling Algorithm

The trickiest part of running the sampler is calculating . The independent candidate density

 if one ignores the exponent. When taken to the power , the value reduces to 0. As a

result, we need to be clever during the calculation to avoid numerical overruns.

where

Next, the independent candidate density’s degrees of freedom parameter must be adjusted to admit

the optimal number of variates. As increases, approaches a multivariate Gaussian. The ideal

acceptance rate for an -dimensional Gaussian is about 23% when samples are drawn. For R8, I ran a

test where the number of samples drawn from is . I adjusted each time and

observed the following acceptance rate,

 clean/shot/delta_R[]_[]_[]_fwriteC

 clean/Eigen_W_[]_R[]_[]_[]_bp62_Values_fwriteR

 t…/clean/Sigma_nu_inv_W_[]_R[]_[]_[]_bp62_fwriteC

clean/tDist_fSolver.m ~ 22 min per (R7)

Plots.m (P)

http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aoap/1034625254
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aoap/1034625254

An acceptance rate of 23% is reached at for R8, at for R7 and at for R16.

Because only shifts the mean of the distribution, the above chart should be independent of the data

vector you wish to cleanse.

 clean/shot/delta_R[]_[]_[]_fwriteC

 clean/Eigen_W_[]_R[]_[]_[]_bp62_Values_fwriteR

 t…/clean/Sigma_nu_inv_W_[]_R[]_[]_[]_bp62_fwriteC

clean/MetropolisHastings.m ~ 84 min (2hr 53min) to generate candidates,

34 min (1hr 11min) to rotate them for R8 (R7)

 t…/clean/shot/Realz_theta_given_delta[]_R[]_[]_[]_[]_fwriteC

 t…/clean/shot/Realz_kappa_given_delta[]_R[]_[]_[]_[]_fwriteC

Note that in this algorithm the realizations are actually realizations of signal in W-space, i.e.

 . It takes roughly half a day to generate a million RVs from . Getting the

coefficients in cell-space is accomplished through the rotation .

Trace Plots

The usual tool for assessing the progress of a Metropolis-Hastings algorithm is known as a “trace plot”.

Each time a new is drawn, a point is laid down indicating the value of the th parameter during

realization . For clarity, only one dimension’s element is visualized at a time.

If the initial vector is selected far from the peak of the distribution , one must continue

drawing random vectors until the region containing the higher probabilities is reached. This is known

as the “burn-in” period. The number of vectors needed, and ultimately discarded, during the burn-in

period varies with distribution and initial position. On a stable trace plot, i.e. one from which we can

accept random variates, the vector elements drawn should vary around some fixed horizontal trend line.

A burn-in period typically manifests itself on a trace plot as a trend approaching that baseline.

With this problem I know precisely where peaks, so no burn-in period should be necessary. I

verify this assumption by examining the trace plots of four elements. These elements were selected to

lie at well-separated redshifts. As one can see in the figures below, the trace plots start out stable

meaning we can start accepting right away.

 clean/shot/delta_R[]_[]_[]_fwriteC

 clean/shot/delta_kappa_R[]_[]_[]_fwriteC

 t…/clean/Sigma_nu_inv_W_[]_R[]_[]_[]_bp62_fwriteC

 clean/Eigen_W_[]_R[]_[]_[]_bp62_Values_fwriteR

 clean/Eigen_W_[]_R[]_[]_[]_bp62_Vectors_fwriteC

 t…/clean/shot/Realz_kappa_given_delta[]_R[]_[]_[]_[]_fwriteC

clean/TracePlots.m ~ 2 min

The above routine creates trace plots in cell-space. If you wish to avoid plotting anything related to ,

ignore input of files 3, 4 and 5 in the above list. Another routine, TracePlots2.m, does the same thing

in W-space.

The black line in these figures represents the value of the data element while the blue line represents

the value of the clustering signal component . Note that the variates tend to cluster more

around the signal than the data even though those variates were generated through without explicit

knowledge of . This is exactly the effect we were searching for.

Of course, not every cell has Metropolis-Hastings variates that are right on target with the signal. This

probably occurs because those cells are more highly contaminated than others. Can we show this?

Expected Signal and Variance

We solve for the expected signal in each dimension by averaging over all realizations,

The variance of the mean for uncorrelated random variables is

where
 . This is merely an approximation in this case since random variates drawn through

Metropolis-Hastings are technically not independent of one another. However, these variates are drawn

from an independent candidate density that blankets the entire distribution . This means that

essentially all of the parameter space is accessible on each draw and the correlations aren’t as strong as

they might be otherwise. I might try providing an exact answer, but finding

 is a more

difficult problem than I am willing to undertake at the moment.

Results – R8

To find the mean and variance of the estimated signal, I must consider all files. There isn’t

enough room in memory to read them all in simultaneously, so I have to do it piecewise.

 clean/shot/delta_R[]_[]_[]_fwriteC

 clean/shot/delta_kappa_R[]_[]_[]_fwriteC

 t…/clean/shot/Realz_kappa_given_delta[]_R[]_[]_[]_[]_fwriteC

clean/kappahatAnalysis.m ~ for each realizations, 6.7min (10.7min) for

the sum, 7min (10.8min) for the variance, R8 (R7)

 clean/shot/kappahat_given_delta[]_R[]_[]_[]_fwriteC

 clean/shot/kappahat_given_delta[]_R[]_[]_logspace_[]_[]_[]_fwriteC

The figure below attempts to visualize the distance between the true signal and the raw data and

estimated signal and , respectively. For about 58.3% of cells, the true signal lies closer to the

estimate than to the raw data . In other words, if given the choice to measure the true clustering

signal with or , the estimated signal will yield superior performance.

I can also measure the difference in aggregate using the vector 2-norm. Here are the results for

simulated data vector 2,

Notice that the estimated signal lies closer to the truth than does the raw data.

The deviation has decreased by a factor of which means the variance with the correction is

 times, or 38%, lower than the variance without it.

I can also report how the estimated signal converges over time. We can use this to help determine the

number of realizations needed to achieve an accuracy of acceptable accuracy and precision.

Recalculating
 for each is computationally expensive and it doesn’t change much as a function of

the number of samples anyway. Therefore, I only use
 calculated from the totality of the samples

when plotting the error bars below.

The horizontal axis conveys the number of realizations that went into the signal estimate. The error

bars are the 1 uncertainty in the mean . This plot was created for test data vector 1, R8 with

 .

There is a clear redshift dependence in the cleansing. The distance between the raw data and true

underlying signal divergences as more high-redshift cells are included. When the raw data is replaced

with the signal estimate , the distance still increases but more slowly than the alternative.

 clean/shot/delta_R[]_[]_[]_fwriteC

 clean/shot/delta_kappa_R[]_[]_[]_fwriteC

 clean/shot/kappahat_given_delta[]_R[]_[]_[]_fwriteC

clean/kappahatz.m

For comparison, here’s the same plot but for the cumulative variance of the clustering signal with and

without shot noise. The variances are gathered from the diagonal elements of .

base/Overdensities_DR6_R[]_[]_[]_bp62_fwriteR

 signal/Sigma_kappa_R[]_[]_[]_bp62_fwriteC

SmallCode.m (I) ~ fast

Can we use a plot like this to know where to cut our cells off – a point where cutting would give us a

better signal-to-noise? Are the most distant cells contributing much to the cumulative signal? Do they

contain a lot of real information? If the shot noise increases faster than the cosmological signal but

slower than the number of cells, then we might still be ahead.

I can also measure the difference in aggregate using the vector 2-norm. Here are the results for first 50

 ’s.

Notice that the estimated signal lies closer to the truth than does the raw data. The variance with the

correction is times, or 41%, lower than the variance without it.

Results – R7

The percentage of cells that saw improvement increased to 59.7% for R7 from 58.3% for R8.

Notice that the estimated signal lies closer to the truth than does the raw data. The deviation has

decreased by a factor of which means the variance with the correction is times, or 44%,

lower than the variance without it.

Here are some trace plots.

The convergence properties for R7 are similar to those for R8.

Residual Noise

Under ideal circumstances the power of the deprojected noise, , would exactly equal the sum

of the power of the zero-point and shot noise terms. As shown above, our method removes a bit more

noise than is actually present. This leads to somewhat underestimating and the residual

 somewhat overestimating the actual amount of noise present .

[figure: power spectrum of residual noise between the raw data and estimated signal is shown relative

to true noise (i.e. shot noise plus zero-point noise). .]

Faster Signal Estimates

While placing error bars on requires knowing the full set of realizations, finding the value of

itself does not. If speed is a concern, one can avoid the rotations performed

for each batch of realizations in W-space and instead do one rotation of the averaged at the

very end.

In other words, here’s how the signal estimated is calculated if the random variates have already been

rotated back into cell-space,

If the variables are still in W-space,

I constructed a single efficient routine that both generates the Metropolis-Hastings RVs and aggregates

them to solve for without saving any realizations to disk. After the initialization portion of the code,

the user can specify the data vectors for which he wishes to estimate the signal at the line dd=40:43.

In this case the code would solve for for vectors 40, 41, 42 and 43. Just be sure that there is a file

name provided in the initialization for every solution you want to write to disk. If the user runs this on

10 MATLAB windows simultaneously, he can easily generate at least 40 solutions overnight.

 clean/shot/delta_R[]_[]_[]_fwriteC

 clean/Eigen_W_[]_R[]_[]_[]_bp62_Values_fwriteR

 clean/Eigen_W_[]_R[]_[]_[]_bp62_Vectors_fwriteC

 t…/clean/Sigma_nu_inv_W_[]_R[]_[]_[]_bp62_fwriteC

clean/MHkappahat.m ~ 1.8hrs per run at realizations, R8

 3.2hrs per run at realizations, R7

 clean/shot/kappahat_given_delta[]_R[]_[]_1e5_fwriteC

At the end of this code I have included some scripts to perform analysis and create plots like the ones

presented above.

Before I created the efficient routine, I tested my method by creating two separate pieces of code that

handled the Metropolis-Hastings generation and solver in separate steps. It did this by writing giant

 files to disk in the first step and opening/processing them in the second. This method allows you

to measure the convergence of the estimator, but once that’s been figured out once, there’s really no

need to do it again. For completeness, here are those two routines.

 clean/shot/delta_R[]_[]_[]_fwriteC

 clean/Eigen_W_[]_R[]_[]_[]_bp62_Values_fwriteR

 t…/clean/Sigma_nu_inv_W_[]_R[]_[]_[]_bp62_fwriteC

clean/MetropolisHastingsFast.m ~ 84min (2hr 43min) to generate

candidates, R8 (R7)

 t…/clean/shot/Realz_theta_given_delta[]_R[]_[]_[]_[]_fwriteC

Likewise, the solver is modified only slightly by changing the input realization files and introducing the

rotation through .

 clean/shot/delta_R[]_[]_[]_fwriteC

 clean/shot/delta_kappa_R[]_[]_[]_fwriteC

 clean/Eigen_W_[]_R[]_[]_[]_bp62_Vectors_fwriteC

 t…/clean/shot/Realz_theta_given_delta[]_R[]_[]_[]_[]_fwriteC

clean/kappahatAnalysisFast.m ~ 10.2 min/1e5 realz R7

 clean/shot/kappahat_given_delta[]_R[]_[]_[]_fwriteC

 clean/shot/kappahatK_given_delta[]_R[]_[]_logspace_[]_[]_[]_fwriteC

Expected Shot Noise and Zero-Point Noise

We assume the shot noise is mean-zero and Gaussian with the distribution function,

The signal plus systematic noise is also Gaussian, therefore is symmetric around such that the

probability of obtaining a particular data vector given a set of shot noise parameters is

where

. Let us further introduce the eigenbasis which results from the following

diagonalization,

A data vector represented in -space is denoted

where

Taking the product of the probabilities,

where
 .

The expected value of the th shot noise coefficient in -space is calculated through the equation below.

We have chosen as the shot noise parameters. The second equality comes from Bayes’s

theorem.

Following a similar argument to that employed for -space, we find

Finally, rotate the result back into cell-space with .

Efficiently Solving for

One can evaluate

 relatively quickly if

 and the diagonalization

are already known.

By the Sherman-Morrison-Woodbury formula,

Let and
 .

and

where , , and . Then,

Simplify the matrix inverse by partitioning it, then use the formula for the inverse of a partitioned matrix,

Completing the multiplication, Typically the eigenvalues stored

in are calculated for . To adjust for an arbitrary scaling of the photometric zero-points,

I tested this algorithm explicitly for R8 by multiplying
 from the above equation with and

verifying that the result was the identity matrix.

base/Overdensities_DR6_R[]_[]_[]_bp62_fwriteR

 signal/Sigma_kappa_inv_R[]_[]_[]_bp62_fwriteC

 noiseMat_Vec/Eigen_DR6_R[]_[]_[]_beta_0p62_Vectors_fwriteC

 noiseMat_Vec/Eigen_DR6_R[]_[]_[]_beta_0p62_Values.txt

clean/Bspace.m ~ (1hr) for
 (R8),

(3.6 days) for (R8), (15min) for
 (R8)

 g…/clean/Sigma_KappaEta_inv_[sp02]_R[]_[]_[]_bp62_fwriteC

 g…/clean/Sigma_KappaEta_inv_B_[sp02]_R[]_[]_[]_bp62_fwriteC

 clean/Eigen_B_[sp02]_R[]_[]_[]_bp62_Vectors_fwriteC

 clean/Eigen_B_[sp02]_R[]_[]_[]_bp62_Values_fwriteR

Testing the Shot Noise Estimator

I assess the quality of the shot noise estimator in two ways. First, I use one fixed shot noise overdensity

vector with signal and zero-point realizations such that . I estimate the

shot noise for each and average the estimates for each cell,

3

Second, I use multiple realizations of and predict for each . I

assume a default guess for the shot noise in each cell is 0 and define the default error as

 . I

compare this against the estimate error

 . For each cell, I average each set of errors and

see whether the estimate is closer to the true shot noise than zero.

base/Overdensities_DR6_R[]_[]_[]_bp62_fwriteR

 signal/Eigen_kappa_R[]_[]_[]_beta_0p62_Vectors_fwriteC

 signal/Eigen_kappa_R[]_[]_[]_bp62_Values_fwriteR

 cells_grids/A_DR6_R[]_[]_[]_bp62_fwriteR

 g…/clean/Sigma_KappaEta_inv_B_[sp02]_R[]_[]_[]_bp62_fwriteC

 clean/Eigen_B_[sp02]_R[]_[]_[]_bp62_Vectors_fwriteC

 clean/Eigen_B_[sp02]_R[]_[]_[]_bp62_Values_fwriteR

clean/zgd.m ~ 4 to 15 min per section

 clean/ZetaTestSingle_[sp02]_R[]_[]_[]_bp62_[].txt

clean/ZetaTestMultiple_[sp02]_R[]_[]_[]_bp62_[].txt

Plots are created in paper1.m. This first plot shows the values in each cell of the simulated shot noise

 and the average of the predicted shot noise using multiple signal and systematic noise

realizations.

My algorithm does a significantly better job of estimating the shot noise than a random guess would. It

is mostly able to pick out the sign of the overdensity and there is a positive correlation between the

magnitude of

 and

. As expected, the shot noise of low redshift objects is less than that of high

redshift objects. The values along the -axis are the result of averaging over 10,000 realizations.

The next plot shows the expected default error and smart error using 10,000 unique realizations of

signal, shot noise and systematic noise. This figure shows that at low redshifts there is very little

difference between assuming a default shot noise of 0 and using my estimate. For higher redshift cells

where the shot noise is larger, using my estimate is preferable to assuming the shot noise is zero.

Testing the Zero-Point Noise Estimator

Because has a rank , diagonal elements of equal zero. This makes it

impossible to directly evaluate
 since of the diagonal elements of

equal infinity. Therefore when solving for we must employ an approach that sidesteps the need

for
 .

I suggest the following. Because ,

and thus,

I assess the quality of this estimator in several ways. First, I generate a single zero-point realization

 and an associated . I combine this into data realizations with randomized

signal and shot noise vectors . Each realization will admit a solution for the

expected signal and shot noise, and consequently for the zero-point noise as well,

The zero-point solutions can be averaged over to provide a best estimate in each cell,

Second, we use to compute a best-fit set of photometric coefficients by solving

 . These can be compared against and associated with the SEGMENT lengths to see

whether longer SEGMENTs are better constrained.

We can also solve for , the photometric zero-points per realization via

 . The average of these individual solutions can be reported,

Third, I use multiple realizations of and to calculate and for

each . I assume a default guess of 0 for the systematic error in each cell and

define the default error as

 . I compare this against the estimate error

 . For each

cell, I average each set of errors and see whether the estimate is closer to the true shot noise than zero.

Finally, I do the same thing for the photometric zero-points in each SEGMENT. I assume a default guess

of 0 for the zero-point in each SEGMENT and define the default error as

 . I compare this against

the estimate error

 . For each SEGMENT, I average each set of errors and see

whether the estimate is closer to the true zero-point than zero.

base/Overdensities_DR6_R[]_[]_[]_bp62_fwriteR

 base/PrimarySegmentLengths_R[].txt

 signal/Eigen_kappa_R[]_[]_[]_beta_0p62_Vectors_fwriteC

 signal/Eigen_kappa_R[]_[]_[]_bp62_Values_fwriteR

 cells_grids/A_DR6_R[]_[]_[]_bp62_fwriteR

 g…/clean/Sigma_KappaEta_inv_B_[sp02]_R[]_[]_[]_bp62_fwriteC

 clean/Eigen_B_[sp02]_R[]_[]_[]_bp62_Vectors_fwriteC

 clean/Eigen_B_[sp02]_R[]_[]_[]_bp62_Values_fwriteR

clean/egd.m ~

 clean/EtaTestSingle_[sp02]_R[]_[]_[]_bp62_[].txt

clean/DmTestSingle_[sp02]_R[]_[]_[]_bp62_[].txt

clean/EtaTestMultiple_[sp02]_R[]_[]_[]_bp62_[].txt

clean/DmTestMultiple_[sp02]_R[]_[]_[]_bp62_[].txt

The general outcome of this investigation is that this algorithm can pick out the effects of the systematic

noise, but at the magnitude of , the results are weak. Consider these results for the R8 cells.

The blue line indicates the linear trend, but the correlation between the truth and the estimate is only

weakly positive.

However, you still get the sense here that this is doing a better job than nothing at all. The predicted

systematic error overdensities are still trending the right way and there are isolated “strings” of cells

that appear to be more positively sloped than others. I conducted a visual investigation of these cells

along the most prominent string in the upper right-hand corner of the figure. I find that they are aligned

along the longest SEGMENT in the survey. (This was a quick and dirty cut so the other blue dots off of

the main SEGMENT are almost certainly not related.)

This indicates that prediction of the systematic error is possible, but difficult especially in the presence

of other higher magnitude sources of signal and noise. However, the predictive capacity of the

estimator is better for groups of cells that are subjected to the same systematic offset.

When we allow the systematic overdensities to vary we find that our estimator on average does offer a

better prediction than would a default guess of . As with the shot noise case, the estimate is

more powerful for high redshift cells. One also notices a separated string below the main line of points.

Again, this refers to cells in the longest SEGMENT of the footprint.

In looking at the solution for I find that as with the predictive power of the zero-points is

weak, but present. The colorbar is the length of the associated PRIMARY SEGEMNT in degrees. Most

SEGMENTs are too small, and therefore contain too little information, for our algorithm to say anything

useful about their zero-points. This is shown through the nearly horizontal line of blue dots for which

 . As the SEGMENTs get longer (visually this is the light blue into red) then start to gradually

approach the linear trend that represents a perfect prediction. Only SEGMENTs with non-zero lengths

are plotted here.

I get the same answer from both and . That’s encouraging and lowers the amount of work

I’d have to do in figuring out which is preferable.

When the signal, shot noise and zero-point noise realizations are permitted to vary, the predicted zero-

points have the behavior as visualized in the figure below.

We again see that on average my estimator performs better than the default position of simply taking all

of the zero-points to be equal to zero. As before, the better performance is experienced by the longer

SEGMENTs.

Analysis of Power Spectrum

We want to examine the effect cleansing has on the galaxy clustering power spectrum. We will do this

in two ways – by 1) plotting an actual power spectrum by averaging power over discretized bins and 2)

integrating over all length scales to determine the total variance.

Power in Bins

Let’s start by figuring out the power spectrum in discretized bins. There are a couple different ways to

do this, but I will employ a non-parametric estimator that utilizes the signal eigenmodes. I established

earlier that the power spectrum of the clustering signal can be represented as a variance weighted sum

over all Fourier-transformed signal eigenvectors ,

Because the eigenvectors are discretized, the best we can do in finding each is a fast Fourier

transform. This means we will have to split -space into a discrete number of (about 480 or so) bins.

Let the boundaries of the th bin be and . The power in this bin is the average of the Fourier

amplitudes between those two band powers,

where

Using the eigenvalues

 will recover the fiducial power spectrum used in our model. But to assess the

quality of the signal reconstruction, we should replace this with the variance of the mean-zero

estimated signal coefficients in signal-space such that

where and . Note that once the signal modes and Fourier grid spacings are

set, the coefficients need only be solved for once. New estimated signal coefficients can be plugged in

thereafter to yield their unique power spectrum.

To find the variance of the power in each bin I begin with the knowledge that each of the terms are

independent of one another. This holds since the eigenmodes from which they derive are linearly

independent. Therefore,

 is an average, so the variance on the average will be the variance of all the terms that determine

the coefficient (this is what is given in

d…/power_spectra/coef/Bmn[]_R[]_kappa_VarlB_fwriteR). I should take the values in that

table and divide each by where is the number of Fourier modes that contributed to the average.

This value is reported in the final column of the table.

At times it is more convenient to represent the power in terms of the W-space eigenmodes.

The best estimate of the power in the th bin is

when .

Integrated Power

We can measure the total signal variance by integrating over the entire power spectrum,

Within a finite Fourier box, the best we can do is a sum over the available -vectors,

where is the resolution of the grid boxes in Fourier space. This is equivalent to the following when

is the volume of the full Fourier grid in cell-space,

For my problem, this is almost always set to . Note that this is a finite sum over all

 -vectors. It follows that

Again, since we are assessing the impact of the estimated signal, we replace the eigenvalue with the

square of the signal coefficient. Therefore the total signal variance can be written like so when

 . These can be precomputed and stored once the signal modes are finalized.

To perform the FFTs I use the FFTW algorithm implemented through MATLAB. Note that this algorithm

does not normalize the transforms. In other words, transforming a function from Fourier space then

back again will yield a result that differs from the original function by a factor of . As such, the

numerical values of will ultimately be scaled by to be correct.

Solving for the and Coefficients

Fourier transforming one signal mode requires approximately 3 minutes on a single processor. Because

there are tens of thousands of modes, the full suite of transforms is quite expensive. As a result, it pays

to only have to do it once. In this section I describe the code that gets this job done.

Unlike the coefficients ,which only depend on the signal eigenvectors and the resolution of the

Fourier grid, the coefficients also depend upon how many bins you choose to divide your power

spectrum plot into. It’s difficult to know exactly what number will be best a priori, so the code I outline

below is flexible enough to solve for a suite of -bins. The timings below assume breaking into 3

different sets of -bins (6 total if you count both log-bins and equal-number-in-each bins).

 signal/Eigen_kappa_R[]_[]_[]_bp62_Vectors_fwriteC

 cells_grids/kg_[]_[]_fwriteR

 cells_grids/cgf_R[]_[]_[]_[]_[512]_[1240]_fwriteR

 base/CMATLAB_fftmap_[512]_fwriteC

 base/Cellcg_R[]_[512]_[1240]_fwriteR

power_spectra/FFTEigenmodes.m ~ 3.12 min per R8 mode per processor

 ~ 2.5 days for R8 on 40 processors

 ~ 18,500 R8 modes per day on 40 processors

 ~ 4.4 min per R7 mode per processor

 ~ 5.3 days for R7 on 40 processors

 ~ 18,000 R7 modes per day on 40 processors

 power_spectra/coef/Bmn[]_R[]_kappa_l[]_fwriteR

 power_spectra/coef/Bmn[]_R[]_kappa_[]_fwriteR

 power_spectra/coef/Cm[]_R[]_kappa_[512]_[1240]_fwriteC

The first output file contains coefficients where the bins are equally spaced in log-space. The

second output file contains coefficients where the bins each have an approximately equal number of -

vectors in each bin.

A limitation in the MATLAB parallelization toolbox restricts the number of processors per window to 12.

To run on 40 processors, I split my operations into 4 groups of 10. I run the code for a day, save the

output then run for another day and a half to protect against lost work. I place a value of or

in front of the to indicate which of the 4 files I’m dealing with. Ultimately these files are put back

together again using the script below.

 power_spectra/coef/Bmn[]_R[]_kappa_l[]_fwriteR

 power_spectra/coef/Bmn[]_R[]_kappa_[]_fwriteR

 power_spectra/coef/Cm[]_R[]_kappa_[512]_[1240]_fwriteC

power_spectra/AggregatePower.m ~ couple of seconds

 power_spectra/Bmn_R[]_kappa_l[]_fwriteR

 power_spectra/Bmn_R[]_kappa_[]_fwriteR

 power_spectra/Cm_R[]_kappa_[512]_[1240]_fwriteC

A stripped-down, more efficient version of this algorithm is used for R6. It is aggregated in the usual

way using the routine referenced above.

 signal/Eigen_kappa_R6_0p02_0p22_bp62_Vectors_fwriteC

 cells_grids/kg_512_1240_fwriteR

 cells_grids/cgf_R6_0p02_0p22_bp62_512_1240_fwriteR

 base/CMATLAB_fftmap_512_fwriteC

 base/Cellcg_R6_512_1240_fwriteR

power_spectra/FFTEigenmodesR6.m ~ 3.9 min per mode per processor

 ~ 7.5 days on 40 processors

 ~ 14,600 modes per day on 40 processors

 power_spectra/coef/Bmn[]_R6_kappa_l480_fwriteR

 power_spectra/coef/Cm[]_R6_kappa_512_1240_fwriteC

I wrote R6 specifically to create 480 bins with the idea that I could clump adjacent bins together to get

other divisions like 30 bins or 48 bins. More on this is written about below.

A slimmed down version of this algorithm can be used to evaluate the spectral weighting coefficients for

the W-space eigenmodes. Here the number of bins is fixed at 30 and only the coefficients for the

logarithmically spaced values are returned.

 clean/Eigen_W_[sp02]_R[]_[]_[]_bp62_Vectors_fwriteC

 cells_grids/kg_[]_[]_fwriteR

 cells_grids/cgf_R[]_[]_[]_[]_[512]_[1240]_fwriteR

 base/CMATLAB_fftmap_[512]_fwriteC

 base/Cellcg_R[]_[512]_[1240]_fwriteR

power_spectra/FFTEigenmodesW.m ~ 6hrs for R16 on 40 processors

 ~ 22hrs for R8 on 40 processors

 ~ ? days for R7 on 40 processors

 power_spectra/coef/Dmn[]_R[]_W_l[030]_fwriteR

 power_spectra/coef/Em[]_R[]_W_[512]_[1240]_fwriteC

The AggregatePower.m routine is still used for file combination. (See the bottom of the code.)

power_spectra/AggregatePower.m ~ couple of seconds

 power_spectra/Dmn_R[]_W_l[030]_fwriteR

 power_spectra/Em_R[]_W_[512]_[1240]_fwriteC

The FFT code in C is constructed to only report the unique Fourier vectors while the

code in MATLAB returns the full (and largely redundant) set of
 Fourier vectors. I was unable to fully

figure out how the two relate to one another, however. Therefore my approach has been to filter the

MATLAB output until it is identical in structure to the C output and then deal with it as I would have

otherwise.

In C, the ordering in each dimension goes like this:

The , and indices all start at zero. With the and indices held fixed, the indices vary most

quickly. They start at 0 and continue until . The negative side of the indices are the conjugates

of the positive side so they are omitted (though must be doubled) in the C output. The index is

incremented to 1, the indices are run through, the index goes to 2 and so on. The index is

incremented to 1 only after the index of -1 has concluded. The kg table referenced in the table above

contains this ordering explicitly. The column sd equals 1 if the associated -vector is unique and 2 if its

complex conjugate exists but is omitted.

In MATLAB this ordering is largely maintained. By means of illustration, here’s how the ordering for

 grid boxes in each dimension would look like to start.

MATLAB C

1 0 0 0 1

2 0 0 1 2

3 0 0 2 3

4 0 0 3 4

5 0 0 4 5

6 0 0 -3

7 0 0 -2

8 0 0 -1

9 0 1 0 6

10 0 1 1 7

The values in white are those returned in C and referenced in the kg table. The spaces in gray are filled

in MATLAB but I can’t figure out with what. So my first task was to create a mapping between the

MATLAB and C coefficients.

Each contiguous “block” of C coefficients has a size of . In all, there are of these blocks for

a total of MATLAB coefficients I need to keep track of. In this particular case I would want

the coefficients [1,2,3,4,5,9,10,11,12,13,17,…]. In other words, if I only call elements from

the output Fourier table in MATLAB, I should exactly recreate the result I would get in C.

Boundaries of -bins Equally Spaced in Log-Space

The next step is deciding upon the appropriate boundaries of the -bins. My first approach is to equally

space them in log-space. Storage is a little tricky since there can be different bin splittings and I didn’t

want to create separate tables and code them all by hand.

What I do instead is stack them on top of one another. Here’s an example of what the table looks

like when my bins are split into 4, 6 and 8 respectively.

0.0025 0.0115 0.0070

0.0115 0.0531 0.0323

0.0531 0.2444 0.1488

0.2444 1.1246 0.6845

0.0025 0.0069 0.0047

0.0069 0.0192 0.0130

0.0192 0.0531 0.0361

0.0531 0.1470 0.1000

0.1470 0.4065 0.2768

0.4065 1.1246 0.7656

0.0025 0.0053 0.0039

0.0053 0.0115 0.0084

0.0115 0.0247 0.0181

Next I need to figure out which -vectors belong in which bins. The table has a list of modes that can

easily be searched over to find which modes lie within any particular boundary.

The question is how to save this information. I have ordered the in ascending order and saved them in

the column vector . I save the corresponding C indices of the ordered ’s to the column vector .

Then, using the limits in , I go through each row one at a time and find the maximum value of

that is <= . I mark the index (of) that belongs to this maximum and stick it into the table below.

Of course, the first index must always be 1 and the final index must always be .

1 229 0.0070 389

230 20,005 0.0323 38,641

20,006 1,896,493 0.1488 3,763,737

1,896,494 67,371,008 0.6845 130,414,961

1 51 0.0047 81

52 1008 0.0130 1839

1009 20,005 0.0361 38,641

20,006 414,535 0.1000 818,497

414,536 8,697,581 0.2768 17,314,253

8,697,582 67,371,008 0.7656 116,044,417

1 23 0.0039 33

24 229 0.0084 389

230 2090 0.0181 3887

The third column of is identical to the third column of . For example, if I wanted to reference

all of the information for the elements where , I would type

kg(ord(414536:8697581),:). The fourth column contains the number of -vectors that exist

within the specified range of indices (i.e. -values, but not including =0). The number includes the

vectors doubled through . I added this fourth column after first running this routine for R8, so there’s

a hack in power_spectra/nbl_fixer.m that fixes the files.

Boundaries of -bins with Equal Number of Vectors in Each Bin

The other way to split the -vectors into bins is by placing an equal number of vectors in each bin. As

mentioned in the previous section, I have ordered the in ascending order and saved the corresponding

C indices to the long column vector . Then I perform a cumulative sum over the corresponding

elements to learn how many vectors have magnitudes equal to or less than the value of currently

referenced. The first and last indices are saved like so. As before, the first index must always be 1 and

the final index must always be .

1 16,840,099 0.3802

16,840,100 33,654,260 0.5778

33,654,261 50,488,942 0.6932

50,488,943 67,371,008 0.8409

1 11,232,801 0.3321

11,232,802 22,445,818 0.5048

22,445,819 33,654,260 0.6001

33,654,261 44,876,120 0.6742

44,876,121 56,104,042 0.7531

56,104,043 67,371,008 0.8738

1 8,428,224 0.3018

8,428,225 16,840,099 0.4586

16,840,100 25,248,224 0.5453

The third column is the average of all the magnitudes within the specified bin. For example, if I

wanted to reference all of the information for the elements in the 4th of 6 bins, I would type

kg(ord(33654261:44876120),:).

Splitting Eigenmode Elements Across Grid Boxes and Fourier Transforming

The next step is to split each eigenvector element fractionally amongst the grid boxes its cell intersects.

The fastest way to do this, I think, is to identify all of the unique Cell ID’s and figure out the range of

elements of that belong to that cell. The example below for R8 says that the grid box ID’s and

cell/grid box fractions associated with the 4th cell (where CellID = 3) can be found between rows 167 and

220 inclusive of the , and tables.

0

1

2

3

4

1 52

53 106

107 166

167 220

221 277

The benefit of this system is that it allows me to relatively quickly populate a column vector where the

first 52 elements equal , elements 53 through 106 equal and so on. By multiplying this

vector element-wise with the elements in (the equally long) , I have instantly found the fractional

value in each gridbox due to that particular mode. I can then add these values to the grid boxes

indicated in and I’m ready to Fourier transform.

The following subroutine breaks the signal into grid boxes, Fourier transforms it and exports the

coefficients as they would be reported in C.

gridFFT

C index

1 0 0 0 1

2 0 0 1 2

3 0 0 2 2

4 0 0 3 2

5 0 0 4 1

6 0 1 0 1

7 0 1 1 2

 -1 -1 1

Binning Power and Solving for and

Every value of for which is actually standing in for two vectors, with the other lying on the flip

side of the -plane. These powers must be doubled to account for the full Fourier space.

This makes particularly easy to calculate. I merely need to multiply the and

columns element-wise and sum them up.

The coefficients are saved into tables with the following structure,

Each column is reserved for the power due to one signal mode. Column contains the value for

that bin. These values should be the points at which the power spectrum is plotted. The logarithmically

spaced bins have an additional column at the end containing the number of -vectors that went into

building that coefficient.

Because the values are averages, they are evaluated somewhat differently than . Using the

and tables, the —vectors corresponding to each range is referenced. The power in those grid

boxes are multiplied element-wise by and summed just like in . To get the average, though, one

must also divide by the sum of that range’s values.

The and tables are subsequently separated and each block is saved to its own

file.

Clumping the Coefficients

This will mostly reference the work I did for R6. During the Fourier transforms R6 is split into 480 bins.

The output file looks something like this,

 Mode 1 Mode 2 Mode N

Bin 1

Bin 2

Bin 10

Bin 480

Let be the lower limit of the first bin. Let be the upper limit of the first bin and the lower limit of

the 2nd bin. Let be the upper limit of the 2nd bin and the lower limit of the 3rd bin and so on. Let the

averages within the th bin be denoted . (For the purposes of this exercise ignore the notation given by

the table above.) The first bin’s average is defined to be

Suppose we are averaging over the first 4 bins. We are looking for the quantity

We can set up a matrix equation

This allows us to solve for and then solve for . When averaging over the next bin, the last

becomes the new .

Recall that is an average. The total sum that was averaged was
 where

 is the number of

 -vectors that went into the average of bin . If I was clumping the first 10 bins, I would add all these up

and take their average,

This is how the new coefficient is defined. With 480 to start with, there would be 48 of these per

mode.

 power_spectra/coef/Bmn_R[6]_kappa_l[480]_fwriteR

power_spectra/BmnSplit.m ~ 4 seconds each

 power_spectra/coef/Bmn_R[6]_kappa_l[030]_fwriteR

I can also do splitting dynamically. Instead of grouping 48 at a time, I can do consecutive groups with a

different number of averaged modes each time. This can be useful since there is more spectral

information available at large . To average it in the same way as the low modes would discard

information unnecessarily.

The task then is to develop a method of dynamically splitting according to my plotting needs. I’m

going to take a cue from Percival (2007) in setting up my splitting. There are about 50 data points

 , 8 in , and 10 between . There are 7 more at values

less than that. This leads to a total of 75 points. This breakdown should give a sense of how many

blocks to group together when defining in point on the power spectrum. I think this sort of spacing

might work out. The sum of the elements in this vector is 480.

 d…/power_spectra/coef/Bmn_R[]_kappa_l[480]_fwriteR

power_spectra/BmnSplit2.m ~ few seconds

 d…/power_spectra/coef/Bmn_R[]_kappa_l[B]_fwriteR

I have to organize my splitting by letters since they are difficult to characterize by numbers alone.

Here’s how they go.

A: sp = [140,40,6,6,4*ones(1,25),2*ones(1,94)];

B: sp = [80,60,40,20,10,4*ones(1,24),2*ones(1,87)];

Plotted Power Spectra

In this section I will introduce two methods by which to plot power spectra using the coefficients –

empirically and analytically. I will display the spectra for , , and using both methods and the

spectrum for using only the empirical method.

By default, the power spectra coefficient are calculated in signal-space. The code that follows will

assume that this default is maintained. (It is possible to do the same thing with the coefficients

calculated in another space, like noise-space, but the results should be the same and in the interest of

time I will forgo any additional investigation or investment in making the code more modular.) Input

vectors must be in cell-space. The necessary rotation into signal-space will be done by the

code.

The empirical method involves inputting a collection of actual vectors, finding the power spectrum of

each and returning both the individual spectra and their average with error bars. This code assumes the

 coefficients are of the variety.

Analytical Method

All Power Spectra

Rather than find the power spectra of individual vectors, the analytical method finds the power spectra

using the variances of various signal and noise components. To plot their spectra these variances must

be computed in signal-space, so let’s take each component individually. Recall that a full vector in cell-

space corresponds to in signal-space.

SIGNAL

The variance of the signal along each dimension of signal-space is trivial,

SHOT NOISE

In signal-space, a shot noise overdensity vector is . The th element of equals

 . The variance of this component is

where is the expected number of galaxies in the th cell.

ZERO-POINT NOISE

In signal-space, a zero-point noise overdensity vector is while in noise-space we have

 . It follows that where . The th element of equals

 . The variance of this component is

DATA VECTOR

Because signal, shot noise and zero-point noise are independent of one another, it follows that

Each dimension’s variance subsequently scales the coefficients which are then combined to yield

power spectra.

base/Overdensities_DR6_R[]_[]_[]_bp62_fwriteR

 signal/Eigen_kappa_R[]_[]_[]_bp62_Values_fwriteR

 noiseMat_Vec/Eigen_DR6_R[]_[]_[]_beta_0p62_Values.txt

 signal/Eigen_kappa_R[]_[]_[]_beta_0p62_Vectors_fwriteC

 noiseMat_Vec/Eigen_DR6_R[]_[]_[]_beta_0p62_Vectors_fwrite

 power_spectra/Bmn_R[]_kappa_l[]_fwriteR

power_spectra/PkAnalytical.m ~ b/n 15 min and an hour

 power_spectra/Pk_kappa_Analytical_R[]_l[]_fwriteR

 power_spectra/Pk_eta_Analytical_R[]_[]_l[]_fwriteR

 power_spectra/Pk_zeta_Analytical_R[]_l[]_fwriteR

 power_spectra/Pk_data_Analytical_R[]_[]_l[]_fwriteR

The following plot displays the power spectra of all three components and their sum.

Here’s a closer look at the difference in power between the raw data and the clustering signal. That the

power differs by about 1000 suggests that the principle difference between the raw data and the signal

is just shot noise.

This time around I want to incorporate error bars into the power spectrum plots. I reported earlier that

where and
 is the variance of the component (e.g. signal, zero-point noise, shot

noise or data) along that mode. The coefficients are linearly independent. Therefore the variance

of the sum equals the sum of the variances,

where

and is the number of -modes for which .

It follows that the variance of the signal power is

The variance of the shot noise power is

The variance of the zero-point noise power is

The variance of the data is

 d…/signal/Overdensities_R[]_fwriteR

 d…/signal/Eigen_kappa_R[]_Values_fwriteC

 d…/noiseMat_Vec/Eigen_DR6_R[]_[]_[]_beta_0p62_Values_fwriteR

 d…/signal/Eigen_kappa_R[]_Vectors_fwriteC

 d…/noiseMat_Vec/Eigen_DR6_R[]_[]_[]_beta_0p62_Vectors_fwriteC

 d…/power_spectra/coef/Bmn_R[]_kappa_l[B]_fwriteR

 d…/power_spectra/coef/Bmn_R[]_kappa_Varl[B]_fwriteR

power_spectra/PkAnalytical2.m ~ b/n 15 min and an hour if is unknown

 d…/power_spectra/M[]_fwriteC

 d…/power_spectra/Pk_kappa_Analytical_R[]_l[A]_fwriteR

 d…/power_spectra/Pk_eta_Analytical_R[]_[]_l[A]_fwriteR

 d…/power_spectra/Pk_zeta_Analytical_R[]_l[A]_fwriteR

 d…/power_spectra/Pk_data_Analytical_R[]_[]_l[A]_fwriteR

power_spectra/PkPlots.m

plots/thesis/Pk_components

[caption: Analytic power spectra of overdensity components for cells of size 7, 11 and 16 Mpc.

Points mark the power averaged over local -modes. Error bars are one standard deviation of the mean.

Powers on scales smaller than the diameter of the cells are excluded from the figures.]

Explaining the Zero-Point Noise Spectrum

We can estimate the shape of the noise power spectrum a priori provided we understand something

about the correlation function of the noise. We often approximate the correlation function as the

ratio of the number of objects observed to the number expected, at some separation distance . In a

three-dimensional space centered at any point, the expected number of evenly distributed point-pairs at

a distance scales as .

However, the correlated zero-point noise lies along a stripe, not a spherical shell. When this planar

geometry intersects the shell, a ring of radius results. Zero-point noise clustering is only permitted in

this ring where the number of point pairs scales as . However, the stripe also has a non-zero width

which effectively increases the number of pairs to where .

The zero-point noise correlation function may be approximated as

Translating an isotropic correlation function to a power spectrum occurs in the usual way,

From this analysis, we expect to go as something between and . As we see in the figure

above, this is essentially what results.

We note that the zero-point spectrum flattens at or . This

roughly corresponds to the largest scales at which the zero-points still have an impact. The longest

SEGMENTs still appreciable in number have lengths of about . At redshifts where is large, this

corresponds to physical distance separations ranging from about at to

 at . This falls more or less in line with what is revealed by the power spectrum.

Empirical Method

An ensemble of simulated data vectors is used to plot power spectra.

 clean/shot/delta_R[]_[]_[]_fwriteC

 clean/shot/delta_kappa_R[]_[]_[]_fwriteC

 clean/shot/delta_eta_R[]_[]_[]_fwriteC

 clean/shot/kappahat_R[]_[]_[]_fwriteC

 signal/Eigen_kappa_R[]_[]_[]_beta_0p62_Vectors_fwriteC

 power_spectra/Bmn_R[]_kappa_l[]_fwriteR

power_spectra/PkEmpirical.m ~

 power_spectra/Pk_kappa_Empirical_R[]_l[]_fwriteR

 power_spectra/Pk_eta_Empirical_R[]_[]_l[]_fwriteR

 power_spectra/Pk_zeta_Empirical_R[]_l[]_fwriteR

 power_spectra/Pk_data_Empirical_R[]_[]_l[]_fwriteR

 power_spectra/Pk_kappahat_R[]_l[]_fwriteR

Lk

If the magnitude of the zero-point noise increases by a factor of 12, the power of that noise increases by

a factor of 144.

Though the results for R7 are similar, the power does appear to increase in amplitude across the board.

The previous two plots suggest that while the estimated signal is closer to the real signal (in a two-norm

sense) than the raw data is to the real signal, the signal estimation method removes a bit too much

noise. The fact that the estimated power spectrum lies below the true signal spectrum suggests that

some portion of the signal was interpreted to be noise and removed inadvertently. The next two plots

illustrate this on a linear scale.

Under ideal circumstances the power of the deprojected noise, , would exactly equal the sum

of the power of the zero-point and shot noise terms. As shown above, our method removes a bit more

noise than is actually present. This leads to somewhat underestimating and the residual

 somewhat overestimating the actual amount of noise present .

We examine the correlations between the band powers of the estimated signal’s power spectrum. The

figure below shows

where .

The large scale modes are highly correlated, likely due to the finite survey window. The smallest scale -

modes have sizes on the order of the cell diameters, wherein little information can be gleaned.

Bias Investigation

Power Spectrum Adjustment

My answer in W-space is

. Before being saved to file, they are rotated back into cell-

space. In terms of evaluating power spectra we rotate into signal-space. To make the notation more

concise, let

While may be the best unbiased solution for the signal in signal-space, is not the best

unbiased solution for its power. To see why, consider that there will always exist a discrepancy

between the true signal and its estimate such that . The power spectrum of the true signal

differs from that of the estimated signal,

The power in the th bin is

To see where the second term comes from,

The signal modes are orthonormal and terms survive only when . Finally,

This serves as the average power of the unbiased power spectrum using the signal

estimates. I find empirically that equals exactly zero (at least to machine

precision). I did so with the code PkBias.m described in the next section.

Best Unbiased Power Estimate

The code below creates all of the power spectra needed to show the improvement of the unbiased

power derived through over the power derived through . A verification that the bias correction

introduced in the last section does in fact bring and onto equal footing is provided. The error

bars given on the differences are the errors on the mean, not the errors on the individual differences.

The best unbiased power estimate in the th column is calculated like so,

 clean/shot/kgd_R[]_sp[02]_[]_fwriteC

 clean/shot/s2gd_R[]_sp[02]_[]_fwriteC

 clean/shot/delta_R[]_[]_[]_fwriteC

 clean/shot/delta_kappa_R[]_[]_[]_fwriteC

 signal/Eigen_kappa_R[]_[]_[]_beta_0p62_Vectors_fwriteC

 power_spectra/Bmn_R[]_kappa_l[30]_fwriteR

power/PkBias.m ~ 2000 vectors in (21/12/4) minutes for R7/R8/R16

 , , of that average,

 , of that average

power_spectra/Pk_kgd_bias_R[]_l[].txt

The figure below summarizes my findings. In brief, there is a large difference between the power

spectrum of the signal and the power spectrum of the data. If the data is replaced with a signal estimate

through that difference nearly vanishes.

 Scaling

To understand why the signal is being systematically underestimated, we modify

 by introducing a scalar factor .

 t…/noiseMat_Vec/Sigma_nu_inv_[]_R[]_[]_[]_bp62_fwriteC

 signal/Sigma_kappa_inv_R[]_[]_[]_bp62_fwriteC

 clean/shot/delta_R[]_[]_[]_fwriteC

 clean/shot/delta_kappa_R[]_[]_[]_fwriteC

 clean/shot/delta_eta_R[]_[]_[]_fwriteC

 power_spectra/Bmn_R[]_kappa_l[30]_fwriteR

clean/WspaceAlpha.m ~ 11hr for diagonalization, 15min for
 (R8)

 g…/clean/Eigen_W_[]_R[]_[]_[]_bp62_alpha[]_Vectors_fwriteC

 g…/clean/Eigen_W_[]_R[]_[]_[]_bp62_alpha[]_Values_[.txt,fwriteR]

 g…/clean/shot/kgd_R[]_sp[02]_[1,2]alpha[]_[]_fwriteC

When reconstructing the signal , we have a choice of using
 or

 . If the former, use “1”

in its filename. If the latter, use “2”.

The and datasets used in the simulations are identical for all . The magnitude of noise equals the

magnitude of the difference between the data and the signal,
 .

Prior to cleansing, the magnitude of the signal is . The magnitude of the data is

 .

R7

using

Drop in noise

variance

0.985 45%

0.99 45%
1.00 45%

The and datasets used in the simulations are identical for all . The magnitude of noise equals the

magnitude of the difference between the data and the signal,
 .

Prior to cleansing, the magnitude of the signal is . The magnitude of the data is

 .

R8

using

Drop in noise

variance

0.90 36%

0.98 38%
0.987 38%

0.99 38%
1.00 38%

The and datasets used in the simulations are identical for all . The magnitude of noise equals the

magnitude of the difference between the data and the signal,
 .

Prior to cleansing, the magnitude of the signal is . The magnitude of the data is

 .

R16

using

Drop in noise

variance

0.50 59%
0.80 77%
0.90 78%
1.00 78%

1.20 78%

Keeping the test vectors the same, here’s how the residual works out when we scale the noise term

when computing .

For R16, the residual noise appears most unbiased when . I repeated the same experiment with

R8. The diagonalization of W-space took about half a day, but here’s the result. From this it appears

that to make this R8 estimator unbiased .

Results – Estimated Signal

Each signal estimate will possess its own power spectrum,

In this section I will use an ensemble of signal estimates to plot the average power of the recovered

signal. By comparing this spectrum to I can quantify the effect of deprojecting the zero-point

offsets as a function of . I can also calculate the covariance matrix of the binned power to see how

much estimates in one bin affect those in others.

 clean/shot/kappahat_given_delta[]_R[]_[]_1e5_fwriteC

 signal/Eigen_kappa_R[]_[]_[]_bp62_Values_fwriteR

 base/pkbao_ConvR[]_fwrite

 power_spectra/Bmn_R[]_kappa_l[]_fwriteR

 power_spectra/Bmn_R[]_kappa_[]_fwriteR

 power_spectra/Cm_R[]_kappa_[512]_[1240]_fwriteC

power_spectra/PkOfKappaHat.m ~ < 1 minute

power_spectra/PkKappahat_R[]_[]_[l,][]_[]_fwriteR

 power_spectra/SigSqPk_R[]_[]_[]_fwriteR

 power_spectra/CovPkKappahat_R[]_[]_[l,][]_[]_fwriteC

In the table above, the first output files contains 1 rows for every -bin. If space were less of an issue, I

would have written the output like this: . The identifier is a

number indicating how many vectors went into the average power at each value . The

standard deviation of the powers that comprise that average are denoted . The final column

subtracts the fiducial power spectrum from the recovered signal power spectrum to see how much they

differ on various length scales. For consistency I say that in this application,

The second output table contains the integrated power over all length scales. The th column contains

the integral (but really a sum) for the th solution of ,

The final output table contains the covariance matrix of the recovered signal power spectrum. Under

normal circumstances, there should be no cross-correlations between powers at different length scales.

But because of the intersections between the signal and zero-point modes, this relationship breaks

down and correlations will be induced.

The code also contains scripts that create the following plots. Let’s start with the power spectrum of the

estimated signal.

Reconstructing the power spectrum using the coefficients and the

 variances very closely

matches the fiducial power spectrum. This suggests that my process of finding the power of each

eigenmode in each Fourier bin is working correctly.

Here’s a plot of the coefficients. While each of the signal eigenmodes has an

amplitude of 1, the total Fourier power for each mode is not constant. This shouldn’t come as a

surprise, however. The higher order modes tend to capture higher frequency behavior. These higher

frequencies are the ones most smoothed by the survey window, reducing their amplitudes. As such, the

sum of all the Fourier amplitudes should decrease somewhat for the modes with higher frequencies and

that’s essentially what we observe here.

The integrated power shows a similar decrease,

The stated error is one standard deviation of an ensemble of 43 solutions.

The covariance matrix of the reconstructed signal powers is shown below in

grayscale,

We can compare the power spectrum of the raw data (i.e. with zero-point and shot noise) with that of

the estimated signal. These routines use an adapted form of the old code,

power_spectra/PkOfKappaHat2.m ~ < 1 minute

My first approach is to find the zero-point noise variance in each dimension of signal-space. An

individual noise vector in signal-space equals where . The variance of the noise

along the th dimension of signal-space should be

By a similar argument, . It follows that

At this point I should be able to plot the spectrum using the coefficients derived from the signal

eigenmodes.

The difference on small scales is likely due to the shot noise.

The following plot contains the same information as above in blue. In red, the th data point equals

 . The bump indicates the estimated signal loses power relative to the fiducial at

intermediate redshifts, but overall the difference for these 43 vectors is consistant with zero. The

spread is gigantic, though, at about at the lowest .

This plot indicates that the signal estimator is largely unbiased since is consistant with

zero. There is some departure from zero at intermediate length scales, thought, so there is a possibility

that bias exists there. There may be little we can do about this, but it is still improving the signal

estimate so our gains outweigh our losses.

The scale of this noise spectrum appears to be off by at least a couple orders of magnitude so I felt it

worthwhile to try plotting it again in two different ways to enhance our confidence in it. Rather than do

it empirically off a collection of (actually), I choose to do it throught a collection of the noise

eigenvalues. I must be careful to multiply the noise eigenvalues by
 .

 signal/Eigen_kappa_R[]_[]_[]_beta_0p62_Vectors_fwriteC

 noiseMat_Vec/Eigen_DR6_R[]_[]_[]_beta_0p62_Vectors_fwrite

 noiseMat_Vec/Eigen_DR6_R[]_[]_[]_beta_0p62_Values_fwrite

 power_spectra/Bmn_R[]_kappa_l[]_fwriteR

 power_spectra/Bmn_R[]_kappa_[]_fwriteR

 power_spectra/Bmn_R[]_eta_l[]_fwriteR

 power_spectra/Bmn_R[]_eta_[]_fwriteR

power_spectra/NoiseSpectrum.m ~

My first approach is to find the zero-point noise variance in each dimension of signal-space. An

individual noise vector in signal-space equals where . The variance of the noise

along the th dimension of signal-space should be

At this point I should be able to plot the spectrum using the coefficients derived from the signal

eigenmodes.

The second method requires that I solve for the coefficients for the noise and plot the spectrum

above just as I have for the signal, but swapping out for

.

 noiseMat_Vec/Eigen_DR6_R[]_[]_[]_beta_0p62_Vectors_fwrite

 cells_grids/kg_[]_[]_fwriteR

 cells_grids/cgf_R[]_[]_[]_[]_[512]_[1240]_fwriteR

 base/CMATLAB_fftmap_[512]_fwriteC

 base/Cellcg_R[]_[512]_[1240]_fwriteR

power_spectra/FFTEigenmodes.m ~ 2.54 min per R8 mode per processor

 ~ 2 days for R8 on 40 processors

 ~ 22,200 R8 modes per day on 40 processors

 power_spectra/coef/Bmn[]_R[]_eta_l[]_fwriteR

 power_spectra/coef/Bmn[]_R[]_eta_[]_fwriteR

 power_spectra/coef/Cm[]_R[]_eta_[512]_[1240]_fwriteC

Finally, I double the magnitude of the zero-points from to with the expectation

that the overall noise power should quadruple.

The result from the rotation method is identical to the one I got empirically. However, the one I get

from the coefficients in noise-space give the same shape with a higher magnitude. The two match

up fairly well at small scales (where there are plenty of -vectors in each bin) and diverge only around

 .

I define the dimensionless variance as

Here’s how the plot comes out if I include all of the modes.

The correlations between the large scale -modes is understandable because of the finite volume size.

As we add more modes into the volume they become increasingly dependent. A maximum of about

0.15 is very good because we expect because of the survey window that these large scale modes would

be highly correlated.

For a Gaussian power spectrum we would expect this to go to a constant of 2 or 3 along the diagonal

after you normalize it. It’s unclear why the diagonal doesn’t go to a constant.

According to Mark, the covariance matrix of the power spectrum goes as something like

Perhaps the best way to look at the statistic, though, is through something like

If I limit myself to only consider the 16 of 200 -bins that contain more than 200 vectors, then the scree

plot of looks like the figure below. Almost all of the signal is contained in the first

mode. Things seem relatively Gaussian.

Results – With Noise Power

In this section I overplot the power spectra of the zero-point noise and raw data to see how they

compare to the power spectrum of the signal itself. To do this, I will rotate my test vectors and

into their signal-space coefficients and plot them as I did the estimated signal,

The power in the th bin due to a single vector should then be

while the integrated power will be

 clean/shot/kappahat_given_delta[]_R[]_[]_1e5_fwriteC

 signal/Eigen_kappa_R[]_[]_[]_bp62_Values_fwriteR

 base/pkbao_ConvR[]_fwrite

 clean/shot/d_R[]_[]_[]_fwriteC

 clean/shot/dn_R[]_[]_[]_fwriteC

 power_spectra/Bmn_R[]_kappa_l[]_fwriteR

 power_spectra/Bmn_R[]_kappa_[]_fwriteR

 power_spectra/Cm_R[]_kappa_[512]_[1240]_fwriteC

power_spectra/PkOfKappaHat2.m ~ < 1 minute

power_spectra/PkKappahat_R[]_[]_[l,][]_[]_fwriteR

 power_spectra/SigSqPk_R[]_[]_[]_fwriteR

 power_spectra/CovPkKappahat_R[]_[]_[l,][]_[]_fwriteC

Cross-Correlations b/n Estimated Signal and Zero-Point Noise

The following code investigates the cross-correlations between the power spectra of the zero-point

noise and estimated signal. The output is a 30x30 text table with correlation values. I explictily evaluate

the correlations as,

 clean/shot/kgd_R[]_sp[02]_[]_fwriteC

 clean/shot/delta_eta_R[]_[]_[]_fwriteC

 signal/Eigen_kappa_R[]_[]_[]_beta_0p62_Vectors_fwriteC

 power_spectra/Bmn_R[]_kappa_l[]_fwriteR

clean/SNcrossCorr.m ~ 20 min or less

 clean/Corr_Pkgd_Pdeltaeta_R[]_sp[02]_[].txt

The first 5 rows and columns on the bottom and right relate to the scale size of the spheres. The values

of the correlations are represented in gray scale. Each row contains the correlation coefficients

between the power in a particular -band of and the power in all of the -bands of
. The

figure below is for R7 when .

For plotting, there is netplotlib in Python, sm (supermongo) and R.

